IDEAS home Printed from https://ideas.repec.org/a/ids/ijcome/v5y2015i4p451-479.html
   My bibliography  Save this article

Historical and risk-neutral estimation in a two factors stochastic volatility model for oil markets

Author

Listed:
  • Gaetano Fileccia
  • Carlo Sgarra

Abstract

In this paper, we analyse spot prices and futures quotations to get inference in the crude oil market. Data are referred to West Texas Intermediate (WTI) index which tracks the crude oil barrel price on New York Mercantile Exchange market. While big part of statistical research in finance deals with risk neutral modelling or with modelling under the historical measure, the purpose of the present paper is to estimate the parameters of three different models when their dynamics is described under both measures. In order to perform this estimation, we resort to a recent technique in Bayesian inference: the particle Markov Chain Monte Carlo (PMCMC) proposed by Andrieu et al. (2010), in which particle filters (PF) algorithms are used to estimate the marginal likelihood for MCMC inference. We adopt a stochastic volatility two-factor framework to describe the spot price dynamics, by extending a previous model proposed by Yan (2002).

Suggested Citation

  • Gaetano Fileccia & Carlo Sgarra, 2015. "Historical and risk-neutral estimation in a two factors stochastic volatility model for oil markets," International Journal of Computational Economics and Econometrics, Inderscience Enterprises Ltd, vol. 5(4), pages 451-479.
  • Handle: RePEc:ids:ijcome:v:5:y:2015:i:4:p:451-479
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=72289
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brix, Anne Floor & Lunde, Asger & Wei, Wei, 2018. "A generalized Schwartz model for energy spot prices — Estimation using a particle MCMC method," Energy Economics, Elsevier, vol. 72(C), pages 560-582.
    2. Gudkov, Nikolay & Ignatieva, Katja, 2021. "Electricity price modelling with stochastic volatility and jumps: An empirical investigation," Energy Economics, Elsevier, vol. 98(C).
    3. Fileccia, Gaetano & Sgarra, Carlo, 2018. "A particle filtering approach to oil futures price calibration and forecasting," Journal of Commodity Markets, Elsevier, vol. 9(C), pages 21-34.
    4. Ignatieva, Katja & Wong, Patrick, 2022. "Modelling high frequency crude oil dynamics using affine and non-affine jump–diffusion models," Energy Economics, Elsevier, vol. 108(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijcome:v:5:y:2015:i:4:p:451-479. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=311 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.