IDEAS home Printed from https://ideas.repec.org/a/ids/ijcome/v4y2014i1-2p4-31.html
   My bibliography  Save this article

Forecasting the real price of oil using online search data

Author

Listed:
  • Dean Fantazzini
  • Nikita Fomichev

Abstract

New models to forecast the real price of oil on the basis of macroeconomic indicators and Google search data are proposed. A large-scale out-of-sample forecasting analysis comparing the different models is performed. It is found that models including both Google data and macroeconomic aggregates statistically outperform the competing models in the short term, while multivariate models including only Google data perform best also for medium and long term forecasts up to 24 months ahead. This finding is confirmed by different robustness checks.

Suggested Citation

  • Dean Fantazzini & Nikita Fomichev, 2014. "Forecasting the real price of oil using online search data," International Journal of Computational Economics and Econometrics, Inderscience Enterprises Ltd, vol. 4(1/2), pages 4-31.
  • Handle: RePEc:ids:ijcome:v:4:y:2014:i:1/2:p:4-31
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=60284
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Havranek, Tomas & Zeynalov, Ayaz, 2018. "Forecasting Tourist Arrivals with Google Trends and Mixed Frequency Data," EconStor Preprints 187420, ZBW - Leibniz Information Centre for Economics.
    2. Tomas Havranek & Ayaz Zeynalov, 2021. "Forecasting tourist arrivals: Google Trends meets mixed-frequency data," Tourism Economics, , vol. 27(1), pages 129-148, February.
    3. Dean Fantazzini & Julia Pushchelenko & Alexey Mironenkov & Alexey Kurbatskii, 2021. "Forecasting Internal Migration in Russia Using Google Trends: Evidence from Moscow and Saint Petersburg," Forecasting, MDPI, vol. 3(4), pages 1-30, October.
    4. Lycheva, Maria & Mironenkov, Alexey & Kurbatskii, Alexey & Fantazzini, Dean, 2022. "Forecasting oil prices with penalized regressions, variance risk premia and Google data," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 68, pages 28-49.
    5. Fantazzini, Dean & Toktamysova, Zhamal, 2015. "Forecasting German car sales using Google data and multivariate models," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 97-135.
    6. Drachal, Krzysztof, 2018. "Comparison between Bayesian and information-theoretic model averaging: Fossil fuels prices example," Energy Economics, Elsevier, vol. 74(C), pages 208-251.
    7. Dean Fantazzini, 2014. "Nowcasting and Forecasting the Monthly Food Stamps Data in the US Using Online Search Data," PLOS ONE, Public Library of Science, vol. 9(11), pages 1-27, November.
    8. Böhme, Marcus H. & Gröger, André & Stöhr, Tobias, 2020. "Searching for a better life: Predicting international migration with online search keywords," Journal of Development Economics, Elsevier, vol. 142(C).
    9. Zeynalov, Ayaz, 2014. "Nowcasting Tourist Arrivals to Prague: Google Econometrics," MPRA Paper 60945, University Library of Munich, Germany.
    10. Serhan Cevik, 2022. "Where should we go? Internet searches and tourist arrivals," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4048-4057, October.
    11. Zeynalov, Ayaz, 2017. "Forecasting Tourist Arrivals in Prague: Google Econometrics," MPRA Paper 83268, University Library of Munich, Germany.
    12. Daekook Kang, 2021. "Box-office forecasting in Korea using search trend data: a modified generalized Bass diffusion model," Electronic Commerce Research, Springer, vol. 21(1), pages 41-72, March.
    13. Khaskheli, Asadullah & Zhang, Hongyu & Raza, Syed Ali & Khan, Komal Akram, 2022. "Assessing the influence of news indicator on volatility of precious metals prices through GARCH-MIDAS model: A comparative study of pre and during COVID-19 period," Resources Policy, Elsevier, vol. 79(C).
    14. Yu, Lean & Zhao, Yaqing & Tang, Ling & Yang, Zebin, 2019. "Online big data-driven oil consumption forecasting with Google trends," International Journal of Forecasting, Elsevier, vol. 35(1), pages 213-223.
    15. Miao, Miao & Khaskheli, Asadullah & Raza, Syed Ali & Yousufi, Sara Qamar, 2022. "Using internet search keyword data for predictability of precious metals prices: Evidence from non-parametric causality-in-quantiles approach," Resources Policy, Elsevier, vol. 75(C).
    16. Dean Fantazzini & Mario Maggi, 2014. "Proposed Coal Power Plants and Coal-To-Liquids Plants: Which Ones Survive and Why?," DEM Working Papers Series 082, University of Pavia, Department of Economics and Management.
    17. Fantazzini, Dean, 2014. "Editorial for the Special Issue on 'Computational Methods for Russian Economic and Financial Modelling'," MPRA Paper 55430, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijcome:v:4:y:2014:i:1/2:p:4-31. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=311 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.