IDEAS home Printed from https://ideas.repec.org/a/ids/ijcist/v21y2025i2p187-208.html
   My bibliography  Save this article

Prediction of the fracture energy properties of concrete using COOA-RBF neural network

Author

Listed:
  • Yongcun Zhang
  • Zhe Bai

Abstract

Evaluating the energy requirements for crack propagation in concrete structures has been a subject of considerable interest since applying fracture mechanics principles to concrete. Concrete fracture energy is important for safe structural design and failure behaviour modelling because it is quasi-brittle. The complex nonlinear behaviour of concrete during fracture has led to ongoing debates regarding fracture energy prediction using existing estimation techniques. Using the previous dataset, prediction approaches were developed to measure the preliminary (Gf) and total (GF) fracture energies of concrete utilising mechanical properties and mixed design elements. Two hundred sixty-four experimental recordings were gathered from an earlier study to construct and analyse ideas. This study combines the radial basis function neural network (RBFNN) with the Coot optimisation algorithm (COOA) and whale optimisation algorithm (WOA). The computation and analysis of Gf and GF used five performance measures, which show that both optimised COOA-RBFNN and WOA-RBFNN evaluations could execute superbly during the estimation mechanism. Therefore, even though the WOA-RBFNN approach has unique characteristics for simulating, the COOA-RBFNN analysis seems quite dependable for calculating. Gf and GF given the rationale and model processing simplicity.

Suggested Citation

  • Yongcun Zhang & Zhe Bai, 2025. "Prediction of the fracture energy properties of concrete using COOA-RBF neural network," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 21(2), pages 187-208.
  • Handle: RePEc:ids:ijcist:v:21:y:2025:i:2:p:187-208
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=145192
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijcist:v:21:y:2025:i:2:p:187-208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=58 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.