IDEAS home Printed from https://ideas.repec.org/a/ids/ijcist/v20y2024i6p505-523.html
   My bibliography  Save this article

LSTM-CNN: a deep learning model for network intrusion detection in cloud infrastructures

Author

Listed:
  • Doddi Srilatha
  • N. Thillaiarasu

Abstract

In cloud computing, resources are shared and accessed over the internet to perform intended computations remotely to minimise infrastructure costs. The usage and dependency on the cloud network have increased, and the chances of invasion and loss of data and challenges to develop a reliable intrusion detection and prevention system (IDPS). The existing machine learning-based approaches require the manual extraction of features, which produces low accuracy and high computational time. Providing a secure network involves a framework based on multi-fold validation and privacy in information transmission. The deep learning-based network IDPS model has been proposed to handle the large volume of network traffic in the cloud. This paper proposes a tailored long short-term memory and convolution neural network (LSTM-CNN)-based approach to design a new IDS. The proposed model productively examines intrusions and generates alerts proficiently by incorporating users' information and conducting examinations to detect intrusions. The model's performance is assessed using accuracy, precision, F1-score and recall measures. The proposed model achieves outstanding performance with a test accuracy of 99.27%.

Suggested Citation

  • Doddi Srilatha & N. Thillaiarasu, 2024. "LSTM-CNN: a deep learning model for network intrusion detection in cloud infrastructures," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 20(6), pages 505-523.
  • Handle: RePEc:ids:ijcist:v:20:y:2024:i:6:p:505-523
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=142451
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijcist:v:20:y:2024:i:6:p:505-523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=58 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.