IDEAS home Printed from https://ideas.repec.org/a/ids/ijcist/v20y2024i3p216-240.html
   My bibliography  Save this article

Real-world application of face mask detection system using YOLOv6

Author

Listed:
  • Jonathan Atrey
  • Rajeshkannan Regunathan
  • Rajkumar Rajasekaran

Abstract

The COVID-19 pandemic has drastically reshaped the human lifestyle and has placed immense importance on our health, safety, and sanitation practices. Among the various safety protocols assigned by the World Health Organisation (WHO) for the same, the usage of face masks to prevent the spread of the virus from an infected person to a healthy person has been of prime significance. To enable efficient execution of the WHO protocol, this case study proposes creating a real-time detection model built explicitly for capturing an audience to alert people who are not following COVID prevention protocols. The proposed case study utilises the state-of-the-art (SOTA) YOLOv6 algorithm along with different iterations of the YOLO algorithm, such as YOLOv4, and YOLOv5, for representing the variation in training performance among various iterations of YOLO. Further, it discusses and analyses the effectiveness of using a real-time detector for face mask detection. This study aims to decrease the risk of a healthy person being affected by the COVID-19 virus by keeping a check on a designated crowd and contributes towards the prevention of the further spread of the virus by crowd monitoring and control methods. The real-time implementation of the proposed case study reports a positive impact, with a 36% increment in people following the standard COVID-19 protocol of wearing masks in public places.

Suggested Citation

  • Jonathan Atrey & Rajeshkannan Regunathan & Rajkumar Rajasekaran, 2024. "Real-world application of face mask detection system using YOLOv6," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 20(3), pages 216-240.
  • Handle: RePEc:ids:ijcist:v:20:y:2024:i:3:p:216-240
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=138785
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijcist:v:20:y:2024:i:3:p:216-240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=58 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.