IDEAS home Printed from https://ideas.repec.org/a/ids/ijcist/v12y2016i1-2p4-36.html
   My bibliography  Save this article

Modelling infrastructure interdependencies, resiliency and sustainability

Author

Listed:
  • Tri-Dung Nguyen
  • Ximing Cai
  • Yanfeng Ouyang
  • Mashor Housh

Abstract

The three key concepts of interdependency, resiliency and sustainability of a complex system have appeared in a number of studies and in various contexts. Nevertheless, little has been done to define and analyse them, especially the latter two, in a unified quantitative framework for engineering infrastructures. In this paper, we propose overarching mathematical modelling frameworks to quantify these three key concepts in the context of complex infrastructure systems with multiple interdependent subsystems (i.e., the system of systems). We show how interdependencies between subsystems can affect the resiliency and sustainability of the entire system. We provide a case study in the context of biofuel development and use different dynamical models to demonstrate these concepts.

Suggested Citation

  • Tri-Dung Nguyen & Ximing Cai & Yanfeng Ouyang & Mashor Housh, 2016. "Modelling infrastructure interdependencies, resiliency and sustainability," International Journal of Critical Infrastructures, Inderscience Enterprises Ltd, vol. 12(1/2), pages 4-36.
  • Handle: RePEc:ids:ijcist:v:12:y:2016:i:1/2:p:4-36
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=75868
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Monsalve, Mauricio & de la Llera, Juan Carlos, 2019. "Data-driven estimation of interdependencies and restoration of infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 167-180.
    2. Ahmed Ali A. Mohamed, 2019. "On the Rising Interdependency between the Power Grid, ICT Network, and E-Mobility: Modeling and Analysis," Energies, MDPI, vol. 12(10), pages 1-17, May.
    3. Caputo, Antonio C. & Kalemi, Bledar & Paolacci, Fabrizio & Corritore, Daniele, 2020. "Computing resilience of process plants under Na-Tech events: Methodology and application to sesmic loading scenarios," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    4. Poulin, Craig & Kane, Michael B., 2021. "Infrastructure resilience curves: Performance measures and summary metrics," Reliability Engineering and System Safety, Elsevier, vol. 216(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijcist:v:12:y:2016:i:1/2:p:4-36. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=58 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.