IDEAS home Printed from https://ideas.repec.org/a/ids/ijbsre/v6y2012i3p228-254.html
   My bibliography  Save this article

An enhanced pre-FUFP algorithm for incremental mining of association rules

Author

Listed:
  • V. Umarani
  • M. Punithavalli

Abstract

Several algorithms have been developed for association rule mining which has now become an interesting field of research in the knowledge discovery domain. Discovery of association rules from large and incremental databases is one of the toughest tasks in data mining. Researchers have been motivated to design innovative and incremental algorithm for association rules mining because the quantity of data available in the real life databases are increasing at a tremendous rate. In this paper, we propose an efficient incremental mining algorithm, called enhanced pre-FUFP algorithm which extends the pre-large item set algorithm further by including the recency concept. The main aim of our proposed approach is to efficiently handle the items that are included recently in the updated database based on adaptive support threshold. At first, the FP-tree is constructed for the old database and then the transactions of incremental database are processed one at a time. After that, the association rules are mined from the updated FP-tree by incorporating an adaptive support. Experiments are performed on extensive real life datasets to compare the performance of our proposed approach with that of the pre-FUFP algorithm. The comparison results show the superiority of our enhanced pre-FUFP algorithm over other existing incremental algorithms.

Suggested Citation

  • V. Umarani & M. Punithavalli, 2012. "An enhanced pre-FUFP algorithm for incremental mining of association rules," International Journal of Business and Systems Research, Inderscience Enterprises Ltd, vol. 6(3), pages 228-254.
  • Handle: RePEc:ids:ijbsre:v:6:y:2012:i:3:p:228-254
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=47924
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijbsre:v:6:y:2012:i:3:p:228-254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=206 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.