IDEAS home Printed from https://ideas.repec.org/a/ids/ijbisy/v6y2010i4p514-529.html
   My bibliography  Save this article

Application of data mining techniques for customer lifetime value parameters: a review

Author

Listed:
  • Harsha Aeron
  • Ashwani Kumar
  • M. Janakiraman

Abstract

Computational and digital advancements with the advent of relationship marketing have changed the land signs of business. Digital revolution led to generation and collection of data in companies and extracting knowledge from this data through knowledge discovery in databases (KDD) process. KDD involves many steps, of which an important step is data mining. Data mining is a process of extracting patterns in data through statistical and other techniques and algorithms. In business, firms are shifting their marketing approach from mass marketing to relationship based marketing leading to an era of customer relationship management (CRM). CRM requires sustainable long term relationship with customers and allocation of resources to maintain these relationships. Customer lifetime value (CLV) is a metric to justify resource allocation by segregating customers on the basis of their contribution to the company. In this paper we review applications of statistical and data mining techniques for predicting CLV and its parameters. The applications of techniques such as logistic regression, decision trees, artificial neural networks, genetic algorithms, fuzzy logic and support vector machines are covered. In the end, a case study is presented to estimate few CLV parameters for a direct marketing company.

Suggested Citation

  • Harsha Aeron & Ashwani Kumar & M. Janakiraman, 2010. "Application of data mining techniques for customer lifetime value parameters: a review," International Journal of Business Information Systems, Inderscience Enterprises Ltd, vol. 6(4), pages 514-529.
  • Handle: RePEc:ids:ijbisy:v:6:y:2010:i:4:p:514-529
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=35744
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijbisy:v:6:y:2010:i:4:p:514-529. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=172 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.