IDEAS home Printed from https://ideas.repec.org/a/ids/ijbisy/v6y2010i2p200-218.html
   My bibliography  Save this article

Pattern recalling analysis of English alphabets using Hopfield model of feedback neural network with evolutionary searching

Author

Listed:
  • Somesh Kumar
  • Manu Pratap Singh

Abstract

In this paper, we are analysing the performance of Hopfield model of feedback neural networks (NNs) with general Hebbian learning rule and genetic algorithm (GA) for pattern recognition. In the Hopfield type of NNs, the weighted code of input patterns provides an auto-associative function in the network, which exhibits its associative memory feature. The objective is to determine the optimal weight matrix for efficient recalling of any approximate input pattern. For this, we explore the population generation technique (mutation and elitism), crossover and setting up of proper fitness evaluation functions to generate the new population of the weight matrices. This process will continue until the last weight matrix has been selected. The experiments consider a neural network architecture that stores all letters of English alphabets (capitals only) using Hebbian rule and then accomplishes the recalling of these stored patterns on presentation of any prototype input pattern of the already stored patterns using both conventional Hebbian rule and evolutionary algorithm. The simulated results demonstrate the better performance of network for recalling of the stored letters of English alphabets using GA and minimise the randomness from the GA.

Suggested Citation

  • Somesh Kumar & Manu Pratap Singh, 2010. "Pattern recalling analysis of English alphabets using Hopfield model of feedback neural network with evolutionary searching," International Journal of Business Information Systems, Inderscience Enterprises Ltd, vol. 6(2), pages 200-218.
  • Handle: RePEc:ids:ijbisy:v:6:y:2010:i:2:p:200-218
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=34354
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijbisy:v:6:y:2010:i:2:p:200-218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=172 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.