IDEAS home Printed from https://ideas.repec.org/a/ids/ijbisy/v13y2013i3p343-358.html
   My bibliography  Save this article

Summarising customer online reviews using a new text mining approach

Author

Listed:
  • Neda AleEbrahim
  • Mohammad Fathian

Abstract

In recent years, with the expansion of electronic commerce, the number of customer online reviews available on the internet is growing rapidly. Lots of online merchant's websites ask the customers to leave a review about their experiences with the products. The reviews gathered from these websites are rich source of information for product development and marketing. The large volume of reviews that a product receives, make it hard for a potential customer or a manufacturer to read them and know about the customers' preferences, needs and experiences. So, this large volume of text data needs to be summarised using text mining approaches. The approach used in this paper to overcome this problem, is to develop a text summarisation system which extracts and groups the representative sentences of customer reviews. The proposed system, first extracts key topics discussed frequently in the customer review texts in the form of sequences of words. Then, the proposed system, groups the sentences assigned to the key topics, based on their semantic and syntactic similarity, using a genetic clustering algorithm. The evaluation result of the proposed system shows that the technique is effective and outperforms an existing text summarisation method.

Suggested Citation

  • Neda AleEbrahim & Mohammad Fathian, 2013. "Summarising customer online reviews using a new text mining approach," International Journal of Business Information Systems, Inderscience Enterprises Ltd, vol. 13(3), pages 343-358.
  • Handle: RePEc:ids:ijbisy:v:13:y:2013:i:3:p:343-358
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=54468
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdullah Gök & Alec Waterworth & Philip Shapira, 2015. "Use of web mining in studying innovation," Scientometrics, Springer;Akadémiai Kiadó, vol. 102(1), pages 653-671, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijbisy:v:13:y:2013:i:3:p:343-358. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=172 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.