IDEAS home Printed from https://ideas.repec.org/a/ids/ijbisy/v11y2012i1p69-92.html
   My bibliography  Save this article

Pattern recognition using enhanced non-linear time-series models for predicting dynamic real-time decision making environments

Author

Listed:
  • S. Uma
  • A. Chitra

Abstract

The abundance of data and importance of knowledge extraction to foresee the future has made time dependent data analysis an inevitable and challenging task in all areas of science and engineering. High dimensionality and the presence of noise in the non-linear time-series data makes it difficult for the existing clustering algorithms to produce efficient results. Hence, two approaches for time series representation (TSR) techniques by name hybrid dimensionality reduction (HDR) and extended hybrid dimensionality reduction (EHDR) and high low non-overlapping (HLN) clustering algorithm that produces efficient results by controlling noise and reducing the dimensionality optimally are proposed. A comparison of the experimental results on intraday non-linear stock data sets to predict the similarity in their intraday behaviour using K-means clustering algorithm with MINDIST as distance measure using symbolic aggregate approximation (SAX) and HLN using HDR and EHDR has proved that EHDR and HDR TSRs outperforms the other models.

Suggested Citation

  • S. Uma & A. Chitra, 2012. "Pattern recognition using enhanced non-linear time-series models for predicting dynamic real-time decision making environments," International Journal of Business Information Systems, Inderscience Enterprises Ltd, vol. 11(1), pages 69-92.
  • Handle: RePEc:ids:ijbisy:v:11:y:2012:i:1:p:69-92
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=48342
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijbisy:v:11:y:2012:i:1:p:69-92. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=172 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.