IDEAS home Printed from https://ideas.repec.org/a/ids/ijbfmi/v1y2009i2p95-110.html
   My bibliography  Save this article

Forecasting brand sales with wavelet decompositions of related causal series

Author

Listed:
  • Antonis A. Michis

Abstract

We consider methods for forecasting brand sales utilising wavelet decompositions of related causal series. Wavelet decompositions can uncover the hidden periodicities inherent in marketing time series like pricing and can therefore provide superior information in causal sales forecasting methods. We specifically address the problem of multicollinearity since the proposed wavelet packet transformation of a time series of length T, generates 2T – 2 correlated vectors of coefficients, each of length T. We find that partial least-squares provide the most accurate forecasting method which at the same time achieves the desired dimension reduction in the estimation problem.

Suggested Citation

  • Antonis A. Michis, 2009. "Forecasting brand sales with wavelet decompositions of related causal series," International Journal of Business Forecasting and Marketing Intelligence, Inderscience Enterprises Ltd, vol. 1(2), pages 95-110.
  • Handle: RePEc:ids:ijbfmi:v:1:y:2009:i:2:p:95-110
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=28449
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. I A Eckley & G P Nason, 2018. "A test for the absence of aliasing or local white noise in locally stationary wavelet time series," Biometrika, Biometrika Trust, vol. 105(4), pages 833-848.
    2. Aykroyd, Robert G. & Barber, Stuart & Miller, Luke R., 2016. "Classification of multiple time signals using localized frequency characteristics applied to industrial process monitoring," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 351-362.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijbfmi:v:1:y:2009:i:2:p:95-110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=156 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.