IDEAS home Printed from https://ideas.repec.org/a/ids/ijbexc/v6y2013i5p584-604.html
   My bibliography  Save this article

Forecasting day-ahead price of electricity - a dynamic regression approach

Author

Listed:
  • Amitava Bandyopadhayay
  • Soumya Roy
  • Dipojjwal Ghosh

Abstract

The electricity market is being deregulated all over the world. Deregulation has brought in a variety of trading systems such as day-ahead trading and has also introduced high volatility of electricity prices. The large variability of price increases the risk for the market participants and forces the business houses to look for a forecasting accuracy of about ± 3%. This paper provides a method to predict next-day electricity prices using dynamic regression methodology where the price was regressed on selected demand, as well as supply side variables available in the public domain, and the error has been modelled using ARIMA/SARIMA models. The results were found to be very encouraging with MAPE lying in the range of ± 3.5% in most cases. In order to reduce the complexity associated with developing many models, a clustering methodology was used to group the different hours of the day so as to reduce the number of forecasting models to be fitted. Agglomerative hierarchical clustering with single linkage was used and models for representative hours had the required level of accuracy.

Suggested Citation

  • Amitava Bandyopadhayay & Soumya Roy & Dipojjwal Ghosh, 2013. "Forecasting day-ahead price of electricity - a dynamic regression approach," International Journal of Business Excellence, Inderscience Enterprises Ltd, vol. 6(5), pages 584-604.
  • Handle: RePEc:ids:ijbexc:v:6:y:2013:i:5:p:584-604
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=56110
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abeer Alshejari & Vassilis S. Kodogiannis & Stavros Leonidis, 2020. "Development of Neurofuzzy Architectures for Electricity Price Forecasting," Energies, MDPI, vol. 13(5), pages 1-24, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijbexc:v:6:y:2013:i:5:p:584-604. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=291 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.