IDEAS home Printed from https://ideas.repec.org/a/ids/ijbexc/v20y2020i4p561-574.html
   My bibliography  Save this article

Improving business process by predicting customer needs based on seasonal analysis: the role of big data in e-commerce

Author

Listed:
  • K. Moorthi
  • K. Srihari
  • S. Karthik

Abstract

Many e-commerce sites give item recommendations to buyers while they navigate the site. This study aims to identify the ways to predict the customer demands based on different seasonal in India and improving the business process of a new e-commerce seller by giving recommendations. We focus on textile and we categorised the seasonal in to three winter season, summer season and rainy season. In this study we analyse historical sale record of a new e-commerce seller Esteavo International based on these three seasonal. Using these analyses, we aim to determine the purchase patterns of the customers and the factors affecting the changes in sale on different seasons. Also, we developed new big data architecture it guides the e-commerce seller for taking effective decisions to improve their business process.

Suggested Citation

  • K. Moorthi & K. Srihari & S. Karthik, 2020. "Improving business process by predicting customer needs based on seasonal analysis: the role of big data in e-commerce," International Journal of Business Excellence, Inderscience Enterprises Ltd, vol. 20(4), pages 561-574.
  • Handle: RePEc:ids:ijbexc:v:20:y:2020:i:4:p:561-574
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=106438
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aitor Goti & Leire Querejeta-Lomas & Aitor Almeida & José Gaviria de la Puerta & Diego López-de-Ipiña, 2023. "Artificial Intelligence in Business-to-Customer Fashion Retail: A Literature Review," Mathematics, MDPI, vol. 11(13), pages 1-32, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:ijbexc:v:20:y:2020:i:4:p:561-574. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=291 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.