IDEAS home Printed from https://ideas.repec.org/a/ids/eujine/v4y2010i3p336-354.html
   My bibliography  Save this article

An evolving hybrid neural approach for predicting job completion time in a semiconductor fabrication plant

Author

Listed:
  • Toly Chen
  • Yi-Chi Wang

Abstract

Predicting job completion time is an important but difficult task to a semiconductor fabrication plant. To further enhance its effectiveness, an evolving hybrid neural approach is proposed in this study. To evaluate the effectiveness of the proposed approach, Production Simulation (PS) is also employed to generate test data. According to experimental results, the predicting accuracy of the evolving hybrid neural approach is significantly better than those of many existing approaches. In addition, to improve the practicability of the evolving hybrid neural approach, several issues in practical applications are addressed and discussed. Though the proposed evolving hybrid neural approach seems to be theoretically complicated, its ease of implementation on the production planning and control for a semiconductor plant is demonstrated in this study. [Received 10 October 2008; Revised 05 March 2009; Revised 13 June 2009; Accepted 14 June 2009]

Suggested Citation

  • Toly Chen & Yi-Chi Wang, 2010. "An evolving hybrid neural approach for predicting job completion time in a semiconductor fabrication plant," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 4(3), pages 336-354.
  • Handle: RePEc:ids:eujine:v:4:y:2010:i:3:p:336-354
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=33334
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:eujine:v:4:y:2010:i:3:p:336-354. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=210 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.