IDEAS home Printed from https://ideas.repec.org/a/ids/eujine/v15y2021i2p273-294.html
   My bibliography  Save this article

K -means clustering combined with principal component analysis for material profiling in automotive supply chains

Author

Listed:
  • João N.C. Gonçalves
  • Paulo Cortez
  • M. Sameiro Carvalho

Abstract

At a time where available data is rapidly increasing in both volume and variety, descriptive data mining (DM) can be an important tool to support meaningful decision-making processes in dynamic supply chain (SC) contexts. Up until now, however, scarce attention has been given to the application of DM techniques in the field of inventory management. Here, we take advantage of descriptive DM to detect and grasp important patterns among several features that coexist in a real-world automotive SC. Principal component analysis (PCA) is employed to analyse and understand the interrelations between ten quantitative and dependent variables in a multi-item/multi-supplier environment. Afterwards, the principal component scores are characterised via a K-means clustering, allowing us to classify the samples into four clusters and to derive different profiles for the multiple inventory items. This work provides evidence that descriptive DM contributes to find interesting feature-patterns, resulting in the identification of important risk profiles that may effectively leverage inventory management for improved SC performance. [Received: 5 April 2019; Revised: 1 December 2019; Revised: 22 January 2020; Accepted: 21 April 2020]

Suggested Citation

  • João N.C. Gonçalves & Paulo Cortez & M. Sameiro Carvalho, 2021. "K -means clustering combined with principal component analysis for material profiling in automotive supply chains," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 15(2), pages 273-294.
  • Handle: RePEc:ids:eujine:v:15:y:2021:i:2:p:273-294
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=114009
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:eujine:v:15:y:2021:i:2:p:273-294. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=210 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.