IDEAS home Printed from https://ideas.repec.org/a/ids/eujine/v12y2018i6p832-854.html
   My bibliography  Save this article

An adaptive large neighbourhood search-based optimisation for economic co-scheduling of mobile robots

Author

Listed:
  • Bing-Hai Zhou
  • Jia-Hui Xu

Abstract

The growing energy consumption and environmental pressures call for economic and friendly green manufacturing. The paper creatively studies an economic part feeding scheduling problem with a cooperative mechanism to coordinate multiple mobile robots in the fullest sense. When solving the economic co-scheduling problem in mixed-model assembly lines, this paper jointly considers the objective of energy saving as well as the robot employment cost, which incorporates traditional performance criterion with growing energy concerns. In order to improve the performance and diversity of solutions, a multi-phase adaptive search (MPAS) algorithm is proposed which is integrated with clustering heuristics, specific destroy and repair rules, adaptive selection and perturbation strategy. Computational experiments are conducted in order to test and verify the effectiveness and efficiency of the proposed MPAS algorithm. Comparison tests are carried out between the proposed MPAS and two widely-applied benchmark algorithms. The results obtained in this study might be inspiring for future studies on energy-efficient cooperative scheduling topics. [Received 16 February 2018; Revised 22 May 2018; Accepted 22 June 2018]

Suggested Citation

  • Bing-Hai Zhou & Jia-Hui Xu, 2018. "An adaptive large neighbourhood search-based optimisation for economic co-scheduling of mobile robots," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 12(6), pages 832-854.
  • Handle: RePEc:ids:eujine:v:12:y:2018:i:6:p:832-854
    as

    Download full text from publisher

    File URL: http://www.inderscience.com/link.php?id=96402
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ids:eujine:v:12:y:2018:i:6:p:832-854. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sarah Parker (email available below). General contact details of provider: http://www.inderscience.com/browse/index.php?journalID=210 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.