IDEAS home Printed from https://ideas.repec.org/a/idi/jiedee/v18y2012i2p126-131.html
   My bibliography  Save this article

A Naïve Approach To Speed Up Portfolio Optimization Problem Using A Multiobjective Genetic Algorithm / Una Aproximación Ingenua Para Acelerar El Programa De Optimización De Carteras Usando Un Algoritmo Genético Multiobjetivo

Author

Listed:
  • Baixauli-Soler, J. Samuel

    (Universidad de Murcia (España))

  • Alfaro-Cid, Eva

    (Universidad Politécnica de Valencia (España))

  • Fernández-Blanco, Matilde O.

    (Universidad de Valencia (España))

Abstract

Genetic algorithms (GAs) are appropriate when investors have the objective of obtaining mean-variance (VaR) efficient frontier as minimising VaR leads to non-convex and non-differential risk-return optimisation problems. However GAs are a time-consuming optimisation technique. In this paper, we propose to use a naïve approach consisting of using samples split by quartile of risk to obtain complete efficient frontiers in a reasonable computation time. Our results show that using reduced problems which only consider a quartile of the assets allow us to explore the efficient frontier for a large range of risk values. In particular, the third quartile allows us to obtain efficient frontiers from the 1.8% to 2.5% level of VaR quickly, while that of the first quartile of assets is from 1% to 1.3% level of VaR. / Los algoritmos genéticos son apropiados cuando los inversores tienen el propósito de obtener la frontera eficiente media-VaR, ya que minimizar el VaR ocasiona que el problema de optimización rentabilidad-riesgo no sea ni convexo ni diferencial. Sin embargo, los algoritmos genéticos son una técnica de optimización que exige mucho tiempo de computación. En este artículo proponemos usar una aproximación naïve, consistente en dividir la muestra por cuartiles de riesgo para obtener la frontera eficiente en un tiempo razonable. Nuestros resultados muestran que usando problemas reducidos que sólo consideran un cuartil de los activos podemos explorar la frontera eficiente para un mayor número de niveles de riesgo. Concretamente, la muestra del tercer cuartil permite obtener rápidamente fronteras eficientes con un VaR entre el 1,8 y el 2,5%, mientras que el primer cuartil permite obtener las carteras eficientes con niveles de VaR entre el 1 y el 1,3%.

Suggested Citation

  • Baixauli-Soler, J. Samuel & Alfaro-Cid, Eva & Fernández-Blanco, Matilde O., 2012. "A Naïve Approach To Speed Up Portfolio Optimization Problem Using A Multiobjective Genetic Algorithm / Una Aproximación Ingenua Para Acelerar El Programa De Optimización De Carteras Usando Un Algoritm," Investigaciones Europeas de Dirección y Economía de la Empresa (IEDEE), Academia Europea de Dirección y Economía de la Empresa (AEDEM), vol. 18(2), pages 126-131.
  • Handle: RePEc:idi:jiedee:v:18:y:2012:i:2:p:126-131
    as

    Download full text from publisher

    File URL: http://www.elsevier.es/es/revistas/investigaciones-europeas-direccion-economia-empresa-345/una-aproximacion-ingenua-acelerar-programa-optimizacion-carteras-90133645-articulos-2012
    File Function: complete text
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Efficient portfolio; Genetic algorithm; Value-at-Risk; Cartera eficiente; Algoritmo genético; Valor en riesgo;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • C81 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Microeconomic Data; Data Access

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:idi:jiedee:v:18:y:2012:i:2:p:126-131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tony Crespo Franco (email available below). General contact details of provider: http://www.aedem-virtual.com/es/journal/iedee .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.