IDEAS home Printed from https://ideas.repec.org/a/ibn/masjnl/v14y2020i7p92.html
   My bibliography  Save this article

Analysis of Resampling Techniques on Predictive Performance of Credit Card Classification

Author

Listed:
  • Maira Anis
  • Mohsin Ali
  • Shahid Aslam Mirza
  • Malik Mamoon Munir

Abstract

Credit card fraud detection has been a very demanding research area due to its huge financial implications and rampant applications in almost every area of life. Credit card fraud datasets are naturally imbalanced by having more legitimate transaction in comparison to the fraudulent transactions. Literature represents numerous studies that are aimed to balance the skewed datasets. There are two major techniques of resampling in balancing these sets i.e. under-sampling and oversampling. However both under-sampling and oversampling techniques suffer from their own set of problems that can seriously affect the performance of classifiers that have been inducted for credit card studies in the past. Thus to accelerate detection of credit card fraud, it is very important to implement the strategy that could possibly provide better predictive performance. This paper attempts to find out what resampling technique can work best under different skewed distributions for the domain of credit card fraud detection.

Suggested Citation

  • Maira Anis & Mohsin Ali & Shahid Aslam Mirza & Malik Mamoon Munir, 2020. "Analysis of Resampling Techniques on Predictive Performance of Credit Card Classification," Modern Applied Science, Canadian Center of Science and Education, vol. 14(7), pages 1-92, July.
  • Handle: RePEc:ibn:masjnl:v:14:y:2020:i:7:p:92
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/mas/article/download/0/0/43071/45069
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/mas/article/view/0/43071
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Juszczak, Piotr & Adams, Niall M. & Hand, David J. & Whitrow, Christopher & Weston, David J., 2008. "Off-the-peg and bespoke classifiers for fraud detection," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4521-4532, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paolo Vanini & Sebastiano Rossi & Ermin Zvizdic & Thomas Domenig, 2023. "Online payment fraud: from anomaly detection to risk management," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-25, December.
    2. Emanuel Mineda Carneiro & Carlos Henrique Quartucci Forster & Lineu Fernando Stege Mialaret & Luiz Alberto Vieira Dias & Adilson Marques da Cunha, 2022. "High-Cardinality Categorical Attributes and Credit Card Fraud Detection," Mathematics, MDPI, vol. 10(20), pages 1-23, October.
    3. Hand, David J. & Crowder, Martin J., 2012. "Overcoming selectivity bias in evaluating new fraud detection systems for revolving credit operations," International Journal of Forecasting, Elsevier, vol. 28(1), pages 216-223.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:masjnl:v:14:y:2020:i:7:p:92. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.