IDEAS home Printed from https://ideas.repec.org/a/ibn/masjnl/v11y2017i12p109.html
   My bibliography  Save this article

Measuring Economic and Environmental Performance of Energy Resources in ISIC codes: Evidence from Iran’s Industry Sector

Author

Listed:
  • Payam Rashidi
  • Masoud Homayounifar
  • Taghi Ebrahimi Salari
  • Modjtaba Rouhani

Abstract

Recently, in accordance with global environmental conservation awareness, undesirable outputs of production and social activities (e.g., air pollutants) have harmful social and environmental dimensions especially in developing countries. Therefore, this study discusses how to apply Data Environment Analysis (DEA) for environmental assessment. However, previous DEA research has documented a limited use of DEA on environmental assessment. A unique feature of DEA-based environmental assessment is that it needs to classify outputs into desirable and undesirable outputs. On the other hand, there is a lack of literatures in field of measuring on economic and environmental energy efficiency between ISIC codes. Therefore, this paper measured the energy efficiency of Iran’s main ISIC sub sectors using non linear DEA approach. Results indicated that between studied ISIC codes, the codes 15 and 24 have most economic (0.97 and 1.00) and environmental (1.00 and 0.82) efficiency, respectively. Also, in comparison with the other studied ISIC codes, the code 23 is economically and environmentally inefficient (0.28 and 0.32).

Suggested Citation

  • Payam Rashidi & Masoud Homayounifar & Taghi Ebrahimi Salari & Modjtaba Rouhani, 2017. "Measuring Economic and Environmental Performance of Energy Resources in ISIC codes: Evidence from Iran’s Industry Sector," Modern Applied Science, Canadian Center of Science and Education, vol. 11(12), pages 109-109, December.
  • Handle: RePEc:ibn:masjnl:v:11:y:2017:i:12:p:109
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/mas/article/download/72173/39542
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/mas/article/view/72173
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jamasb, Tooraj & Nillesen, Paul & Pollitt, Michael, 2004. "Strategic behaviour under regulatory benchmarking," Energy Economics, Elsevier, vol. 26(5), pages 825-843, September.
    2. Fare, R. & Grosskopf, S. & Hernandez-Sancho, F., 2004. "Environmental performance: an index number approach," Resource and Energy Economics, Elsevier, vol. 26(4), pages 343-352, December.
    3. Sueyoshi, Toshiyuki & Goto, Mika, 2010. "Should the US clean air act include CO2 emission control?: Examination by data envelopment analysis," Energy Policy, Elsevier, vol. 38(10), pages 5902-5911, October.
    4. Huang, J.P. & Poh, K.L. & Ang, B.W., 1995. "Decision analysis in energy and environmental modeling," Energy, Elsevier, vol. 20(9), pages 843-855.
    5. Zhou, P. & Ang, B.W. & Poh, K.L., 2006. "Decision analysis in energy and environmental modeling: An update," Energy, Elsevier, vol. 31(14), pages 2604-2622.
    6. Jebaraj, S. & Iniyan, S., 2006. "A review of energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(4), pages 281-311, August.
    7. Peng Zhou & Kim Leng Poh & Beng Wah Ang, 2016. "Data Envelopment Analysis for Measuring Environmental Performance," International Series in Operations Research & Management Science, in: Shiuh-Nan Hwang & Hsuan-Shih Lee & Joe Zhu (ed.), Handbook of Operations Analytics Using Data Envelopment Analysis, chapter 0, pages 31-49, Springer.
    8. Kumar Mandal, Sabuj & Madheswaran, S., 2010. "Environmental efficiency of the Indian cement industry: An interstate analysis," Energy Policy, Elsevier, vol. 38(2), pages 1108-1118, February.
    9. Seiford, Lawrence M. & Thrall, Robert M., 1990. "Recent developments in DEA : The mathematical programming approach to frontier analysis," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 7-38.
    10. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    11. Sueyoshi, Toshiyuki & Goto, Mika & Ueno, Takahiro, 2010. "Performance analysis of US coal-fired power plants by measuring three DEA efficiencies," Energy Policy, Elsevier, vol. 38(4), pages 1675-1688, April.
    12. Zhou, P. & Ang, B.W. & Wang, H., 2012. "Energy and CO2 emission performance in electricity generation: A non-radial directional distance function approach," European Journal of Operational Research, Elsevier, vol. 221(3), pages 625-635.
    13. Seiford, Lawrence M. & Zhu, Joe, 2002. "Modeling undesirable factors in efficiency evaluation," European Journal of Operational Research, Elsevier, vol. 142(1), pages 16-20, October.
    14. Abbott, Malcolm, 2005. "Determining Levels of Productivity and Efficiency in the Electricity Industry," The Electricity Journal, Elsevier, vol. 18(9), pages 62-72, November.
    15. William W. Cooper & Lawrence M. Seiford & Kaoru Tone, 2006. "Introduction to Data Envelopment Analysis and Its Uses," Springer Books, Springer, number 978-0-387-29122-2, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    2. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    3. Ramli, Noor Asiah & Munisamy, Susila, 2015. "Eco-efficiency in greenhouse emissions among manufacturing industries: A range adjusted measure," Economic Modelling, Elsevier, vol. 47(C), pages 219-227.
    4. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    5. Sueyoshi, Toshiyuki & Goto, Mika, 2011. "DEA approach for unified efficiency measurement: Assessment of Japanese fossil fuel power generation," Energy Economics, Elsevier, vol. 33(2), pages 292-303, March.
    6. Xiaowei Song & Yongpei Hao & Xiaodong Zhu, 2015. "Analysis of the Environmental Efficiency of the Chinese Transportation Sector Using an Undesirable Output Slacks-Based Measure Data Envelopment Analysis Model," Sustainability, MDPI, vol. 7(7), pages 1-20, July.
    7. Zhou, Peng & Poh, Kim Leng & Ang, Beng Wah, 2007. "A non-radial DEA approach to measuring environmental performance," European Journal of Operational Research, Elsevier, vol. 178(1), pages 1-9, April.
    8. Halkos, George E. & Tzeremes, Nickolaos G., 2013. "A conditional directional distance function approach for measuring regional environmental efficiency: Evidence from UK regions," European Journal of Operational Research, Elsevier, vol. 227(1), pages 182-189.
    9. Molinos-Senante, María & Hernández-Sancho, Francesc & Mocholí-Arce, Manuel & Sala-Garrido, Ramón, 2014. "Economic and environmental performance of wastewater treatment plants: Potential reductions in greenhouse gases emissions," Resource and Energy Economics, Elsevier, vol. 38(C), pages 125-140.
    10. Qingyou Yan & Fei Zhao & Xu Wang & Tomas Balezentis, 2021. "The Environmental Efficiency Analysis Based on the Three-Step Method for Two-Stage Data Envelopment Analysis," Energies, MDPI, vol. 14(21), pages 1-14, October.
    11. Lim, Seong-Rin & Schoenung, Julie M., 2011. "Measurement and analysis of product energy efficiency to assist energy star criteria development: An example for desktop computers," Energy Policy, Elsevier, vol. 39(12), pages 8003-8010.
    12. Prasad, Ravita D. & Bansal, R.C. & Raturi, Atul, 2014. "Multi-faceted energy planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 686-699.
    13. Kiani Mavi, Reza & Saen, Reza Farzipoor & Goh, Mark, 2019. "Joint analysis of eco-efficiency and eco-innovation with common weights in two-stage network DEA: A big data approach," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 553-562.
    14. Dakpo, Hervé K & Jeanneaux, Philippe & Latruffe, Laure, 2014. "Inclusion of undesirable outputs in production technology modeling: The case of greenhouse gas emissions in French meat sheep farming," Working Papers 207806, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
    15. Noor Ramli & Susila Munisamy & Behrouz Arabi, 2013. "Scale directional distance function and its application to the measurement of eco-efficiency in the manufacturing sector," Annals of Operations Research, Springer, vol. 211(1), pages 381-398, December.
    16. George Halkos & George Papageorgiou, 2016. "Spatial environmental efficiency indicators in regional waste generation: a nonparametric approach," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 59(1), pages 62-78, January.
    17. Jianting Lin & Changxin Xu, 2017. "The Impact of Environmental Regulation on Total Factor Energy Efficiency: A Cross-Region Analysis in China," Energies, MDPI, vol. 10(10), pages 1-17, October.
    18. Finn R. Førsund, 2018. "Multi-equation modelling of desirable and undesirable outputs satisfying the materials balance," Empirical Economics, Springer, vol. 54(1), pages 67-99, February.
    19. Oggioni, G. & Riccardi, R. & Toninelli, R., 2011. "Eco-efficiency of the world cement industry: A data envelopment analysis," Energy Policy, Elsevier, vol. 39(5), pages 2842-2854, May.
    20. George Halkos & Nickolaos Tzeremes, 2013. "National culture and eco-efficiency: an application of conditional partial nonparametric frontiers," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 15(4), pages 423-441, October.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:masjnl:v:11:y:2017:i:12:p:109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.