IDEAS home Printed from https://ideas.repec.org/a/ibn/masjnl/v11y2017i11p28.html
   My bibliography  Save this article

Aquaponics Automation – Design Techniques

Author

Listed:
  • Noel Scattini
  • Stanislaw MAJ

Abstract

Aquaponics operators that have transitioned from hobby to commercial operators have commonly failed to meet commercial expectations. One of the reasons for failures is the occurrence of severe technical errors. Unexpected events can often have drastic financial consequences on new operators, which could be initially operating within tight margins. Standard techniques like Hazard and Operability studies (HAZOP) are conducted by process and chemical industries to do systematic analysis on a process and its sub-systems. Many aquaponics operators are not familiar with these design processes and find design inadequacies after an event, which normally has financial consequences. This design process is able to identify disturbances that could lead to product deviation and identify hazards that could affect the environment. Identifying process issues and designing engineering controls to prevent or mitigate issues can be carried out in multiple forms or design tools. Failure Mode Effect Analysis (FMEA) is one such tool in a designer’s toolbox and is recognized as an international standard (IEC 60812), which describes techniques to analyze processes that can effect the reliability of a process plant or determine what possible hazards could be present. The use of FMEA has been utilized by industries to aid in carrying out HAZOP design processes, the use of these design processes can lead to inherently reliable processes. Piping and Instrumentation Diagrams also referred to as Process and Instrumentation Diagram (P&ID) are used in the process industry to show an overview of the process plant. The P&ID also identifies instruments that could be required for measurement and any associated alarms that are present to warn operators and mitigate failures in the process. The use of these design tools have identified and mitigated the risks within the initial design concept to prevent these technical errors with engineering controls designed into the process.

Suggested Citation

  • Noel Scattini & Stanislaw MAJ, 2017. "Aquaponics Automation – Design Techniques," Modern Applied Science, Canadian Center of Science and Education, vol. 11(11), pages 1-28, November.
  • Handle: RePEc:ibn:masjnl:v:11:y:2017:i:11:p:28
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/mas/article/download/69617/38928
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/mas/article/view/69617
    Download Restriction: no
    ---><---

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:masjnl:v:11:y:2017:i:11:p:28. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.