IDEAS home Printed from https://ideas.repec.org/a/ibn/masjnl/v11y2016i3p98.html
   My bibliography  Save this article

Real Time Tracking RGB Color Based Kinect

Author

Listed:
  • Ahmed Alzbier
  • Hang Cheng

Abstract

As the present computer vision technology is growing up, and the multiple RGB color object tracking is considered as one of the important tasks in computer vision and technique that can be used in many applications such as surveillance in a factory production line, event organization, flow control application, analysis and sort by colors and etc. In video processing applications, variants of the background subtraction method are broadly used for the detection of moving objects in video sequences. The background subtraction is the most popular and common approach for motion detection. However , this is paper presents our investigation the first objective of the whole algorithm chain is to find the RGB color within a video. The idea from the beginning was to look for certain specific features of the patches, which would allow distinguishing red, green and blue color objects in the image. In this paper an algorithm is proposed to track the real time moving RGB color objects using kinect camera. We will use a kinect camera to capture the real time video and making an image frame from this video and extracting red, green and blue color .Here image processing is done through MATLAB for color recognition process each color. Our method can tracking accurately at 95% in real-time.

Suggested Citation

  • Ahmed Alzbier & Hang Cheng, 2017. "Real Time Tracking RGB Color Based Kinect," Modern Applied Science, Canadian Center of Science and Education, vol. 11(3), pages 1-98, March.
  • Handle: RePEc:ibn:masjnl:v:11:y:2016:i:3:p:98
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/mas/article/download/63278/35568
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/mas/article/view/63278
    Download Restriction: no
    ---><---

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:masjnl:v:11:y:2016:i:3:p:98. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.