IDEAS home Printed from https://ideas.repec.org/a/ibn/masjnl/v10y2016i3p66.html
   My bibliography  Save this article

Predicting Heart Attacks in Patients Using Artificial Intelligence Methods

Author

Listed:
  • Abbas Nasrabadi
  • Javad Haddadnia

Abstract

Today the heart disease is one of the most important causes of death in the world. So its early prediction and diagnosis is important in medical field, which could help in on time treatment, decreasing health costs and decreasing death caused by it. In fact the main goal of using data mining algorithms in medicine by using patients’ data is better utilizing the database and discovering tacit knowledge to help doctors in better decision making.Therefore using data mining and discovering knowledge in cardiovascular centers could create a valuable knowledge, which improves the quality of service provided by managers, and could be used by doctors to predict the future behavior of heart diseases using past records. Also some of the most important applications of data mining and knowledge discovery in heart patients system includes- diagnosing heart attack from various signs and properties, evaluating the risk factors which increases the heart attack.In this article the effort focused on evaluating the previous works on discovering knowledge using data mining in heart diseases field, and also explain the used algorithms in every one of the previous works, to help the future researchers to gain maximum benefits from these abilities. Because of this, in the next sections, first we will explain various works in data mining field using heart patients’ data, and will show the ability of data mining in various applications of heart disease field, and based on a table will show the history of data mining and it’s applications in heart diseases field. Finally we will provide the best methods and algorithms used in various applications of heart diseases using a comparison and will show the results in a table. It is obvious in the diagrams that the suggested method has the best performance and best quality in prediction.

Suggested Citation

  • Abbas Nasrabadi & Javad Haddadnia, 2016. "Predicting Heart Attacks in Patients Using Artificial Intelligence Methods," Modern Applied Science, Canadian Center of Science and Education, vol. 10(3), pages 1-66, March.
  • Handle: RePEc:ibn:masjnl:v:10:y:2016:i:3:p:66
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/mas/article/download/56403/30202
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/mas/article/view/56403
    Download Restriction: no
    ---><---

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:masjnl:v:10:y:2016:i:3:p:66. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.