IDEAS home Printed from https://ideas.repec.org/a/ibn/jpsjnl/v8y2021i2p39.html
   My bibliography  Save this article

Resistance and Correlation of Pod Shattering and Selected Agronomic Traits in Soybeans

Author

Listed:
  • Richard Katembo Kataliko
  • Paul M. Kimani
  • James W. Muthomi
  • Wothaya S. Wanderi
  • Florence M. Olubayo
  • Felister M. Nzuve

Abstract

Pod shattering is a serious production constraint that causes 34 to 99% seed losses in soybean. Identification, development and utilization of varieties with resistance to pod shattering can reduce yield losses. However, there is limited information on genetic variability of this trait in local germplasm. Twenty soybean genotypes were evaluated at KALRO-Embu and KALRO-Mwea Research Centers, in Eastern and Central highlands of Kenya during the 2016 short and long rain seasons in an alpha lattice design arranged in a 4 x 5 pattern with three replicates. Data was collected on maturity, plant height, biomass, number of seeds per pod, pod shattering and grain yield and analyzed using Genstat software (15th edition). Pearson’s correlation estimates for pod shattering and agronomic traits was done using Statistix-8 statistical package. Results showed significant interactions between genotypes, sites and seasons for days to maturity, plant biomass and pod shattering. Seasonal and location effects were significant for all the traits measured except for plant height, grain yield and pod shattering. Genotype effects showed significances for all the traits. Results showed 17.87% of soybean pod shattering in Embu and 17.41% in Mwea; 16.58% during the long rains and 18.77% during the short rains. Based on their scores, ten genotypes were classified as resistant, seven as moderately resistant, one as moderately susceptible and two as highly susceptible. Genotypes SB-8 followed by Gazelle, SB-74, SB-4, Nyala and SB-20 were the most resistant. SB-93 and SB-25 were the most susceptible genotypes. Three varieties (931/5/34, 915/5/12 and SB-154) performed well with grain yields of up to 1800 kg ha-1. The study found that pod shattering resistance was negatively correlated with number of seeds per pod (r=-0.13*). Plant with few seeds per pod tended to have high resistance to pod shattering. The resistant genotypes can be utilized for production and in effective breeding programs.

Suggested Citation

  • Richard Katembo Kataliko & Paul M. Kimani & James W. Muthomi & Wothaya S. Wanderi & Florence M. Olubayo & Felister M. Nzuve, 2021. "Resistance and Correlation of Pod Shattering and Selected Agronomic Traits in Soybeans," Journal of Plant Studies, Canadian Center of Science and Education, vol. 8(2), pages 1-39, December.
  • Handle: RePEc:ibn:jpsjnl:v:8:y:2021:i:2:p:39
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/jps/article/download/0/0/40415/41600
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/jps/article/view/0/40415
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuai Li & Weidong Wang & Lianjun Sun & Hong Zhu & Rui Hou & Huiying Zhang & Xuemin Tang & Chancelor B. Clark & Stephen A. Swarm & Randall L. Nelson & Jianxin Ma, 2024. "Artificial selection of mutations in two nearby genes gave rise to shattering resistance in soybean," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:jpsjnl:v:8:y:2021:i:2:p:39. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.