Author
Listed:
- Molly Akello
- Felister Nzuve
- Florence Olubayo
- Godwin Macharia
- James Muthomi
Abstract
Stem rust Puccinia graminis Pers. f. sp. tritici of wheat is the most important disease in Kenya. Emergence of race Ug99 and other variants virulent to host resistance genes including Sr31 has rendered 95% of Kenyan cultivars susceptible. This study aimed to identify new sources of resistance to stem rust in a collection of exotic genotypes. Three hundred and sixteen wheat genotypes were screened at the Kenya Agricultural and Livestock Research Organization (KALRO) in Njoro for two seasons in 2015. The host reaction to disease was evaluated based on the modified Cobb scale. The relative Final Rust Severity (rFRS), Average Coefficient of Infection (ACI) and relative Area Under Disease Progress Curve (rAUDPC) were used to characterize the genotypes for stem rust resistance. Agronomic traits were also recorded. Six genotypes namely ALBW-100, ALBW- 204, EPCBW-261, EPCBW-295, PCHP-309 and PCHPBW-310 with significantly low ACI, rAUDPC and rFRS were identified. Thirty five genotypes showed Pseudo-Black Chaff (PBC) phenotype associated with resistant gene Sr2, a source of partial resistance in wheat. The genotypes also showed low disease severity (20-25%) and Moderately Susceptible (MS) – Susceptible (S) infection types in both seasons. Genotypes had significant differences (p ≤ 0.05) on plant height, 1000-kernel weight and number of tillers indicating genetic variation which could be exploited in breeding for resistance to stem rust. The negative relationship between agronomic variables involving plant height, spikelet length and 1000-kernel weight showed harmful effects of stem rust on plant characteristics including yield. The stem rust resistant genotypes with good agronomic traits could be introgressed into adapted Kenyan backgrounds while the genotypes showing presence of PBC could be utilized to develop durable stem rust resistant wheat. Inheritance studies to elucidate the exact genes conferring resistance to stem rust could be conducted for breeders to exploit their genetic variability.
Suggested Citation
Molly Akello & Felister Nzuve & Florence Olubayo & Godwin Macharia & James Muthomi, 2017.
"Identification of Resistance Sources to Wheat Stem Rust from Introduced Genotypes in Kenya,"
Journal of Agricultural Science, Canadian Center of Science and Education, vol. 9(2), pages 1-73, January.
Handle:
RePEc:ibn:jasjnl:v:9:y:2017:i:2:p:73
Download full text from publisher
More about this item
JEL classification:
- R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
- Z0 - Other Special Topics - - General
Statistics
Access and download statistics
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:jasjnl:v:9:y:2017:i:2:p:73. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.