Author
Listed:
- Nasir Malik
- Alberto Nuñez
- Lindsay McKeever
- Madhurababu Kunta
- David Douds
- David Needleman
Abstract
Mycorrhizal fungus spores and propagules were collected from the soils in the vicinity of roots of five different olive cultivars. These mycorrhizal fungus communities were amplified in trap cultures and then their effect on the growth and polyphenol levels of leek plants was determined. All mycorrhizal fungus communities increased plant growth in leeks when compared to controls. In addition, communities from the roots of Frantoio and Manzanillo significantly increased plant growth, in terms of plant height and dry weights, as compared to plants that were given mycorrhizal fungus collected from cultivar Mission. Plants inoculated with mycorrhizal fungus from Frantoio also had an increase in 14 polyphenols compared to uninoculated plants. A majority of polyphenol peaks were also higher in leek plants inoculated with mycorrhizal fungi from Frantoio roots when compared to plants inoculated with mycorrhizal fungi from other olive cultivars. The affected polyphenols were identified by mass spectrometry and were mostly found to be derivatives (e.g., pentose, hexose, malonyl, feruyl, and coumaroyl) of quercetin, kaempferol, and apigenin; four remained unidentified. Molecular fingerprinting of mycorrhizal fungus communities from different olive cultivars indicated that fungi of the family Gigasporaceae were a major component of inocula obtained from Frantoio and Manzanillo roots, which were better performers in terms of plant growth and polyphenol content. Mycorrhizal fungi from cv Mission roots were relatively poor performers and were dominated by the mycorrhizae of the family Glomeraceae, specicifally the genus Rhizophagus.
Suggested Citation
Nasir Malik & Alberto Nuñez & Lindsay McKeever & Madhurababu Kunta & David Douds & David Needleman, 2016.
"Mycorrhizal Fungi Collected from the Rhizospheres around Different Olive Cultivars Vary in Their Ability to Improve Growth and Polyphenol Levels in Leeks,"
Journal of Agricultural Science, Canadian Center of Science and Education, vol. 8(8), pages 1-32, July.
Handle:
RePEc:ibn:jasjnl:v:8:y:2016:i:8:p:32
Download full text from publisher
More about this item
JEL classification:
- R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
- Z0 - Other Special Topics - - General
Statistics
Access and download statistics
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:jasjnl:v:8:y:2016:i:8:p:32. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.