Author
Listed:
- Lawrence Owere
- Pangirayi Tongoona
- John Derera
- Nelson Wanyera
Abstract
Blast disease is the most important biotic constraint to finger millet production. Therefore disease resistant varieties are required. However, there is limited information on combining ability for resistance and indeed other agronomic traits of the germplasm in Uganda. This study was carried out to estimate the combining ability and gene effects controlling blast disease resistance and selected agronomic traits in finger millet. Thirty six crosses were generated from a 9 × 9 half diallel mating design. The seed from the 36 F1 crosses were advanced by selfing and the F2 families and their parents were evaluated in three replications. General combining ability (GCA) for head blast resistance and the other agronomic traits were all highly significant (p ≤ 0.01), whereas specific combining ability (SCA) was highly significant for all traits except grain yield and grain mass head-1. On partitioning the mean sum of squares, the GCA values ranged from 31.65% to 53.05% for head blast incidence and severity respectively, and 36.18% to 77.22% for the other agronomic traits measured. Additive gene effects were found to be predominant for head blast severity, days to 50% flowering, grain yield, number of productive tillers plant-1, grain mass head-1, plant height and panicle length. Non-additive gene action was predominant for number of fingers head-1, finger width and panicle width. The parents which contributed towards high yield were Seremi 2, Achaki, Otunduru, Bulo and Amumwari. Generally, highly significant additive gene action implied that progress would be made through selection whereas non-additive gene action could slow selection progress and indicated selection in the later generations.
Suggested Citation
Lawrence Owere & Pangirayi Tongoona & John Derera & Nelson Wanyera, 2016.
"Combining Ability Analysis of Blast Disease Resistance and Agronomic Traits in Finger Millet [Eleusine coracana (L.) Gaertn],"
Journal of Agricultural Science, Canadian Center of Science and Education, vol. 8(11), pages 138-138, October.
Handle:
RePEc:ibn:jasjnl:v:8:y:2016:i:11:p:138
Download full text from publisher
More about this item
JEL classification:
- R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
- Z0 - Other Special Topics - - General
Statistics
Access and download statistics
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:jasjnl:v:8:y:2016:i:11:p:138. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.