Author
Listed:
- Kansuma Burapapol
- Ryota Nagasawa
Abstract
Severely dry climate plays an important role in the occurrence of wildfires in Thailand. Soil water deficits increase dry conditions, resulting in more intense and longer burning wildfires. The temperature vegetation dryness index (TVDI) and the normalized difference drought index (NDDI) were used to estimate soil moisture during the dry season to explore its use for wildfire risk assessment. The results reveal that the normalized difference wet index (NDWI) and land surface temperature (LST) can be used for TVDI calculation. Scatter plots of both NDWI/LST and the normalized difference vegetation index (NDVI)/LST exhibit the triangular shape typical for the theoretical TVDI. However, the NDWI is more significantly correlated to LST than the NDVI. Linear regression analysis, carried out to extract the maximum and minimum LSTs (LSTmax, LSTmin), indicate that LSTmax andLSTmin delineated by the NDWI better fulfill the collinearity requirement than those defined by the NDVI. Accordingly, the NDWI-LST relationship is better suited to calculate the TVDI. This modified index, called TVDINDWI-LST, was applied together with the NDDI to establish a regression model for soil moisture estimates. The soil moisture model fulfills statistical requirements by achieving 76.65% consistency with the actual soil moisture and estimated soil moisture generated by our model. The relationship between soil moisture estimated from our model and leaf fuel moisture indicates that soil moisture can be used as a complementary dataset to assess wildfire risk, because soil moisture and fuel moisture content (FMC) show the same or similar behavior under dry conditions.
Suggested Citation
Kansuma Burapapol & Ryota Nagasawa, 2016.
"Mapping Soil Moisture as an Indicator of Wildfire Risk Using Landsat 8 Images in Sri Lanna National Park, Northern Thailand,"
Journal of Agricultural Science, Canadian Center of Science and Education, vol. 8(10), pages 107-107, September.
Handle:
RePEc:ibn:jasjnl:v:8:y:2016:i:10:p:107
Download full text from publisher
More about this item
JEL classification:
- R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
- Z0 - Other Special Topics - - General
Statistics
Access and download statistics
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:jasjnl:v:8:y:2016:i:10:p:107. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.