Author
Listed:
- Benjamin Kivuva
- Stephen Githiri
- Stephen Githiri
- George Yencho
- George Yencho
- Julia Sibiya
- Julia Sibiya
Abstract
Most crops, including sweetpotato vary widely in yield performance across different agro-ecological environments. This study was set up to determine the genotype x environment interaction (GEI) for storage root yield performance of 24 sweetpotato genotypes in eight environments; two locations - Kiboko and Thika, two moisture stress conditions - drought stress and no drought stress, and two years - 2011 and 2012 in Kenya. Plots of three rows each of 10 plants per genotype, at density of 0.9 m × 0.30 m were panted during dry season under split plot design replicated twice. Managed irrigation was applied to control moisture stress during the growth period. Fresh storage root yield (FSR) data was collected, and drought susceptibility indices (DSI) determined. Additive Main Effects and Multiplicative Interactions (AMMI) genotype main effect by genotype-environment (GGE) interaction biplots and regression analyses were done using Genstat 14th edition to determine GEI effects. The environment, genotype main effects, and the GEI were all significant (P < 0.001). The DSI showed significant variation of genotypes in different environments. The highest yielding genotypes across the environments were G7, G14, G15, and G10 while most stable genotypes were G5, G22 and G2 and the least stable was G24. Thus, genotypes G5, G22 and G2 may be used across environments, while genotypes G7 and G14 could be used, 1) in specific locations to boost production under unpredictable rainfall conditions, 2) incorporated into drought screening breeding programmes to develop a new generation of drought tolerant sweetpotato varieties to meet changing climatic conditions.
Suggested Citation
Benjamin Kivuva & Stephen Githiri & Stephen Githiri & George Yencho & George Yencho & Julia Sibiya & Julia Sibiya, 2014.
"Genotype X Environment Interaction for Storage Root Yield in Sweetpotato Under Managed Drought Stress Conditions,"
Journal of Agricultural Science, Canadian Center of Science and Education, vol. 6(10), pages 1-41, September.
Handle:
RePEc:ibn:jasjnl:v:6:y:2014:i:10:p:41
Download full text from publisher
More about this item
JEL classification:
- R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
- Z0 - Other Special Topics - - General
Statistics
Access and download statistics
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:jasjnl:v:6:y:2014:i:10:p:41. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.