Author
Listed:
- Giovani Greigh de Brito
- Elsa Kuhn Klumb
- Fabiane Grecco da Silva Porto
- Ricardo Antônio Vicintin
- Roberval Pereira Brito
- Angela Diniz Campos
Abstract
The chitosan-based bioactivator FF-BR (Patent Nº- US 9,868,677 B2) represents a cutting-edge solution within green chemistry, designed to enhance plant stresses tolerance. Upon application, FF-BR forms a protective film on the plant surface, triggering defense mechanisms. This study evaluated FF-BR’s capacity to mitigate the effects of water deficit in soybean plants under both greenhouse and field conditions, focusing on its impact on grain yield and physiological performance. Our results demonstrate that FF-BR significantly improved intrinsic water use efficiency (iWUE) in both greenhouse (66.70%) and field environments (35%). The net photosynthetic rate increased (8.12%-greenhouse; 12%-field), while stomatal conductance (20.21%-greenhouse; 15%-field) and leaf transpiration (14.30%-greenhouse; 10%-field) were reduced, reflecting enhanced water use efficiency. Additionally, under greenhouse conditions, FF-BR optimized energy dissipation via non-photochemical quenching (NPQ), potentially improving carbon assimilation during sun-shade transitions in crop canopies. Field experiments indicated cultivar-specific responses to FF-BR application. Early-cycle cultivar BMX 51X51 I2X-Trovão exhibited yield increases of 651 kg ha-1, 515 kg ha-1, and 667 kg ha-1 at concentrations of 0.75%, 1.0%, and 1.25% (v.v), respectively. By contrast, mid-cycle Soytech ST 641-I2X showed lower yield improvements of 278 kg ha-1, 216 kg ha-1, and 187 kg ha-1 at the same concentrations, compared to untreated controls. FF-BR also modulated root architecture by reducing growth rates in total root length (16.09%), root volume (41.11%), and surface area (26.04%) under well-watered conditions, while stabilizing root volume growth under drought, suggesting optimized water acquisition and minimized metabolic costs. This suggests that FF-BR enhances root water acquisition efficiency, while minimizing the metabolic costs of root plasticity—an essential adaptation in fluctuating environments. FF-BR offers a sustainable, innovative tool for improving soybean performance under water deficit conditions, enhancing water use efficiency and photosynthetic optimization while reducing ecological impacts. This bioactivator has promising applications for climate-resilient agriculture and long-term crop productivity.
Suggested Citation
Giovani Greigh de Brito & Elsa Kuhn Klumb & Fabiane Grecco da Silva Porto & Ricardo Antônio Vicintin & Roberval Pereira Brito & Angela Diniz Campos, 2025.
"Chitosan-Based Bioactivator Mitigates Water Deficit Stress and Enhances Soybean Productivity,"
Journal of Agricultural Science, Canadian Center of Science and Education, vol. 17(2), pages 1-1, January.
Handle:
RePEc:ibn:jasjnl:v:17:y:2025:i:2:p:1
Download full text from publisher
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.
- repec:zib:zbppsc:v:3:y:2023:i:2:p:82-85 is not listed on IDEAS
More about this item
JEL classification:
- R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
- Z0 - Other Special Topics - - General
Statistics
Access and download statistics
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:jasjnl:v:17:y:2025:i:2:p:1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.