Author
Listed:
- Edson Costa-Filho
- José L. Chávez
- Huihui Zhang
Abstract
This study evaluated three reflectance-based crop coefficient models (RBCC) for daily maize actual evapotranspiration (ETa) estimates, using multispectral data from spaceborne, airborne, and proximal platforms. The goal was to identify the optimal multispectral sensor that gives more accurate daily ETa estimates. The remote sensing (RS) multispectral platforms included Landsat-8, Sentinel-2, Planet CubeSat, handheld multispectral radiometer (MSR), and unmanned aerial system or UAS, spatial resolution from 30 m to 0.03 m. Three RBCC models that use different vegetation indices as input variables were evaluated in the study. One RBCC uses the normalized difference vegetation index (NDVI). The second model uses the soil-adjusted vegetation index (SAVI), and the third model uses canopy cover (fc). The data for this study were from two maize research sites in Greeley and Fort Collins, Colorado, USA, collected in 2020 and 2021. The Greeley site had a subsurface drip system, while the Fort Collins site had surface irrigation (furrow). Daily maize ETa predictions were compared with observed daily maize ETa data from an Eddy Covariance system installed at each research site. Results indicated that, depending on the RS of ETa algorithm and platform, the optimal input RS data was different. The MSR sensor (1 m) provided the best remote sensing data (input) for the SAVI-based RBCC ETa model, with a maize ETa error (MBE±RMSE) of -0.13 (-3%)±0.67 (16%) mm/d. Sentinel-2 was the best sensor for the remaining two RBCC daily maize ETa algorithms, since the errors for the NDVI-based and fc-based RBCC models for maize ETa were 0.21 (5%)±0.78 (18%) mm/d and 0.59 (14%)±1.07 (25%) mm/d, respectively. These results indicate the need for methods to improve the spectral quality of the remote sensing data to improve spatial ETa estimates and advance sustainable irrigation water management.
Suggested Citation
Edson Costa-Filho & José L. Chávez & Huihui Zhang, 2024.
"A Multi-sensor Analysis of Selected Reflectance-Based Crop Coefficient Models for Daily Maize Evapotranspiration Estimation,"
Journal of Agricultural Science, Canadian Center of Science and Education, vol. 15(12), pages 1-1, April.
Handle:
RePEc:ibn:jasjnl:v:15:y:2024:i:12:p:1
Download full text from publisher
More about this item
JEL classification:
- R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
- Z0 - Other Special Topics - - General
Statistics
Access and download statistics
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:jasjnl:v:15:y:2024:i:12:p:1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.