Author
Listed:
- Fernanda de Fátima da Silva Devechio
- Pedro Henrique de Cerqueira Luz
- Liliane Maria Romualdo
- Valdo Rodrigues Herling
- Mário Antônio Marin
- Odemir Marinez Bruno
- à lvaro Gómez Zuñinga
Abstract
The artificial vision system (AVS) uses image analysis methods that can interpret images and identify nutritional deficiency symptoms in plant, even in the early stages of development. The objective of this study was to propose methods of image processing using analysis by texture to identify the deficiency of calcium (Ca) in maize (Zea mays L.) plants grown in nutrient solution. Plants were grown in nutrient solution in a greenhouse. Calcium doses were 0.0; 1.7; 3.3 and 5.0 mM of Ca, with four replications. Plant and leaf images were sampled at three main stages of maize development- V4 (plants with four leaves fully developed), V6 (plants with six leaves fully developed) and V8 (plants with eight leaves fully developed). Sampled material was split into (i) index leaf (IL) of the growing stage (V4 = leaf 4, V6 = leaf 6, and V8 = leaf 8), and (ii) new leaf (OL), both to image capture and chemical analysis. Such leaves were scanned, processed by the AVS and chemically analyzed. The texture methods used by the AVS to extract deficiency characteristics in the leaf images were- Volumetric Fractal Dimension (VFD), Gabor Wavelet Energy (GWE) and VFD with canonical analysis (VFDCA). The amount of Ca in the solution resulted in variation in the concentration of Ca in NL and IL, allowing the observation of typical symptoms of Ca deficiency. The AVS method was able to identify all Ca levels in leaves, being the GWE the best indicator using color images, scoring 80% of rights in images of the middle section of new leaves in V4.
Suggested Citation
Fernanda de Fátima da Silva Devechio & Pedro Henrique de Cerqueira Luz & Liliane Maria Romualdo & Valdo Rodrigues Herling & Mário Antônio Marin & Odemir Marinez Bruno & à lvaro Gómez Zuñinga, 2024.
"Calcium Deficiency Diagnosis in Maize Leaves Using Imaging Methods Based on Texture Analysis,"
Journal of Agricultural Science, Canadian Center of Science and Education, vol. 14(3), pages 181-181, April.
Handle:
RePEc:ibn:jasjnl:v:14:y:2024:i:3:p:181
Download full text from publisher
More about this item
JEL classification:
- R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
- Z0 - Other Special Topics - - General
Statistics
Access and download statistics
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:jasjnl:v:14:y:2024:i:3:p:181. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.