IDEAS home Printed from https://ideas.repec.org/a/ibn/jasjnl/v12y2024i7p163.html
   My bibliography  Save this article

Heavy Metals Interaction in Soil-Plant System of Carmagnola cannabis Strain

Author

Listed:
  • Dani Fadel
  • Najoie Assaad
  • Ali Hachem
  • Ariadne Argyraki
  • Zacharenia Kypritidou

Abstract

Evolution in the legislation of Cannabis in Lebanon regarding production and consumption of related products for medicinal and recreational uses is leading to emerging regulations regarding the potency and cannabinoid profiles. On 21 April 2020, the Parliament passed a law legalizing cannabis cultivation for medical use. The objective of this work was to estimate the heavy metals accumulation in the soil-plant system and to help the governmental regulatory body on having also into account the impurities of metals within their rules of regulation. The impurity content of hyperaccumulating metals (zinc, chromium, arsenic, manganese, cadmium, barium, aluminum, iron, cobalt, nickel, copper and lead) was evaluated by inductively coupled plasma atomic emission spectrometry (ICP-OES) taking into account the pseudototal and mobilizable concentrations of the elements in the rhizosphere of plants and the total concentrations of their aerial parts and spikes from allotments in Kropia region-Athens, Greece. The main physicochemical assets of topsoil samples such as pH (7.99±0.05) and organic matter content (rich), the X-ray crystallography test (basically quartz, albite and vermiculite) and soil texture determination test (basically sandy loam soil) were also determined. The concentrations of most of our studied elements in soil plant system samples were recorded below or around the plant reference material concentrations used in our analysis. Results showed also that Al was highly toxic in soil and plant samples. In the plant samples, the arsenic was nearly absent and the lead, nickel, copper, chromium and cadmium contents were less than those found in the plant reference material. In the soil samples, only copper and zinc concentrations were found to be within the accepted ranges. The maximum transfer factor is found in lead (Tf – Pb = 0.8223). Average transfer factor of elemental concentrations showed that heavy metals were not easily translocated in the soil-plant system (0.0514±0.0032). In addition, hemp plants that are considered as "hyper-accumulators" showed very acceptable results for industrial and other uses.

Suggested Citation

  • Dani Fadel & Najoie Assaad & Ali Hachem & Ariadne Argyraki & Zacharenia Kypritidou, 2024. "Heavy Metals Interaction in Soil-Plant System of Carmagnola cannabis Strain," Journal of Agricultural Science, Canadian Center of Science and Education, vol. 12(7), pages 163-163, April.
  • Handle: RePEc:ibn:jasjnl:v:12:y:2024:i:7:p:163
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/jas/article/download/0/0/43041/45039
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/jas/article/view/0/43041
    Download Restriction: no
    ---><---

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:jasjnl:v:12:y:2024:i:7:p:163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.