Author
Listed:
- Rani Yudarwati
- Chiharu Hongo
- Gunardi Sigit
- Baba Barus
- Budi Utoyo
Abstract
This study presents a method for detecting rice crop damage due to bacterial leaf blight (BLB) infestation. Rice crop samples are first analyzed using a handheld spectroradiometer. Then, multi-temporal satellite image analysis is used to determine the most suitable vegetation indices for detecting BLB. The results showed that healthy plants have the highest first derivative value of spectral reflectance of the different categories of diseased plants. Significant difference can be found at approximately 690-770 nm (red edge region) which peak or maximum of the first derivative occurs in healthy crop whereas the highest percentage of BLB showed the lowest in that region. Moreover, visible bands such as blue, green, red, and red edge 1 band show variation of correlation in the early (vegetative) to generative stage then getting high especially in early of harvesting stage than the other bands; the NIR band exhibits a low correlation from the early stage of the growing season whereas the red and red edge bands reveal the highest correlations in the later stage of harvesting. Similarly, the satellite image analysis also reveals that disease incidence gradually increases with increasing age of the plant. The vegetation indices whose formulas consist of blue, green, red, and red edge bands (NGRDI, NPCI, and PSRI) exhibit the highest correlation with BLB infestation. NPCI and PSRI indices indicate that crop stress due to BLB is detected from ripening stage of NPCI then the senescence condition is then detected 12 days later. The coefficients of determination between these indices and BLB are 0.44, 0.63, and 0.67, respectively
Suggested Citation
Rani Yudarwati & Chiharu Hongo & Gunardi Sigit & Baba Barus & Budi Utoyo, 2024.
"Bacterial Leaf Blight Detection in Rice Crops Using Ground-Based Spectroradiometer Data and Multi-temporal Satellites Images,"
Journal of Agricultural Science, Canadian Center of Science and Education, vol. 12(2), pages 1-38, April.
Handle:
RePEc:ibn:jasjnl:v:12:y:2024:i:2:p:38
Download full text from publisher
More about this item
JEL classification:
- R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
- Z0 - Other Special Topics - - General
Statistics
Access and download statistics
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:jasjnl:v:12:y:2024:i:2:p:38. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.