Author
Listed:
- Amauri Ghellere Garcia Miranda
- Samuel Nelson Melegari de Souza
- Jair Antonio Cruz Siqueira
- Luciene Kazue Tokura
- Natalia Pereira
- Reginaldo Ferreira Santos
- Reinaldo Prandini Ricieri
- Bruna Pereira da Silva
- Lucas Lourenço Corrêa
- Abel Alves de Souza
- Benhurt Gongora
- Fernando Luiz da Cruz Belana
- Leonardo da Silva Reis
- Ricardo Muller
Abstract
Over the last decades, wind energy has been named as a clean method to generate electrical power. But, to claim this argument many aspects must be evaluated. On one hand, wind power, as an electrical energy source, generates minimum environmental impact when in operation. On the other side, the material extraction for the manufacturing process does create environmental impact and require electrical energy usage. Therefore, when claiming the sustainability of wind power, as a method of electrical power generation, many aspects must be evaluated, such as the Life Cycle Analysis of the turbine. This study has been taken to evaluate the energy cost and its payback period off the wind power turbine S-600, manufactured by Greatwatt, has being evaluated. This evaluation has covered the embodied energy in the gross material present on the final product and its energetic payback period, for the specific case of working in a rural area in the state of Paraná, Brazil. The ISO 14040 methodology, for life cycle analyses, has being applied to estimate the embodied energy in the gross material present on the generator. The annual average energetic production estimation has considered 4 cases, varying the voltage output and hub height, and the nominal capacity, claimed by the manufacturing company. To assess the embodied energy payback period, the theoretical generation capacity has been estimated. Thus, by this analysis, this article has concluded that the embodied energy in the gross material is 803.39MJ. The energetic payback period for this product, at 10 meters hub height, is 11.6 months, if operating on 12 V, and 12.6 months, if operation on 24 V. Furthermore, in the situation of installed at 30 meters from the ground, the energy payback period drops down to 5.3 and 5.5 months, operating on 12 or 24 V respectively. In the situation of nominal generation, the energetic payback period would dropdown to 4.6 and 3.1 months, operating on 12 or 24 V respectively.
Suggested Citation
Amauri Ghellere Garcia Miranda & Samuel Nelson Melegari de Souza & Jair Antonio Cruz Siqueira & Luciene Kazue Tokura & Natalia Pereira & Reginaldo Ferreira Santos & Reinaldo Prandini Ricieri & Bruna P, 2024.
"Wind Power Generator Embodied Energy Payback Analysis for Rural Area in Paraná-Brazil,"
Journal of Agricultural Science, Canadian Center of Science and Education, vol. 11(6), pages 437-437, April.
Handle:
RePEc:ibn:jasjnl:v:11:y:2024:i:6:p:437
Download full text from publisher
More about this item
JEL classification:
- R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
- Z0 - Other Special Topics - - General
Statistics
Access and download statistics
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:jasjnl:v:11:y:2024:i:6:p:437. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.