IDEAS home Printed from https://ideas.repec.org/a/ibn/jasjnl/v11y2024i3p453.html
   My bibliography  Save this article

Non-invasive Physiological Approaches for Plant Phenotyping: Rice Responses to Heat Stress

Author

Listed:
  • Giovani Greigh de Brito
  • Ã talo Lucas de Moraes
  • Diogo Silva Moura
  • Paulo Ricardo Reis Fagundes
  • Angela Diniz Campos
  • André Andres
  • José Maria Barbat Parfit
  • Luís Eduardo Panozzo
  • Sidnei Deuner

Abstract

Rice (Oryza sativa L.) can be negatively impacted by supraoptimum temperatures (above 33 °C) during initial reproductive phase (R3-R5); development and adoption of approaches via non-invasive physiological phenotyping can lead to help build new plant types to face the current extreme climatic events such as future forecasts. For this purpose, screening process was designed to progressively decrease the genotypes number via non-invasive phenotyping approaches; beyond to allow the increase of phenotyping dimensionality degree across tiers. In a first-tier (in 2015-2016 growth season), phenotyping procedures involved measurements of dossel temperatures via thermography imaging in a set of 182 accessions of subspecies Indica, Japonica and Indica/Japonica cross from Embrapa’s Rice Breeding, which were cultivated in two sowing dates. About 30% (55) of the initial genotypes number which showed the lower canopy temperatures were selected based on results of multivariate analyses. In a second-tier (2016-2017 crop season), a second field trial was conducted, using polythene shelters structures aiming ensure the heat stress imposing during the critical phases of plant development; during this period, an effective photochemical quantum yield of photosystem II (YII) performance was monitored across set of genotypes. Data obtained are highlighted and discussed allowing suggest appointments about the usability/bottlenecks of thermography as suitable tool for phenotyping in a large scale manner; beside highlight the importance of some physiological responses as part of the basis of rice heat tolerance. Concluding, the LTB 14031 and BRS Pampa genotypes outperformed the set of evaluated genotypes across sowing dates and years relative to their physiological and grain yield components variables; these genotypes are integrating cross-breeding aiming to construct new plants ideotype which can associate higher grain yield performance when grown under non-stressed conditions and capable to maintain great yield stability under hard environments.

Suggested Citation

  • Giovani Greigh de Brito & à talo Lucas de Moraes & Diogo Silva Moura & Paulo Ricardo Reis Fagundes & Angela Diniz Campos & André Andres & José Maria Barbat Parfit & Luís Eduardo Panozzo & Sidnei De, 2024. "Non-invasive Physiological Approaches for Plant Phenotyping: Rice Responses to Heat Stress," Journal of Agricultural Science, Canadian Center of Science and Education, vol. 11(3), pages 453-453, April.
  • Handle: RePEc:ibn:jasjnl:v:11:y:2024:i:3:p:453
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/jas/article/download/0/0/38268/38788
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/jas/article/view/0/38268
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Deepak K. Ray & Navin Ramankutty & Nathaniel D. Mueller & Paul C. West & Jonathan A. Foley, 2012. "Recent patterns of crop yield growth and stagnation," Nature Communications, Nature, vol. 3(1), pages 1-7, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meike Weltin & Silke Hüttel, 2023. "Sustainable Intensification Farming as an Enabler for Farm Eco-Efficiency?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 84(1), pages 315-342, January.
    2. Manogna R. L. & Aswini Kumar Mishra, 2022. "Agricultural production efficiency of Indian states: Evidence from data envelopment analysis," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4244-4255, October.
    3. Rada, Nicholas E., 2013. "Agricultural Growth in India: Examining the Post-Green Revolution Transition," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 149547, Agricultural and Applied Economics Association.
    4. Terrance Hurley & Jawoo Koo & Kindie Tesfaye, 2018. "Weather risk: how does it change the yield benefits of nitrogen fertilizer and improved maize varieties in sub‐Saharan Africa?," Agricultural Economics, International Association of Agricultural Economists, vol. 49(6), pages 711-723, November.
    5. Zhongen Niu & Huimin Yan & Fang Liu, 2020. "Decreasing Cropping Intensity Dominated the Negative Trend of Cropland Productivity in Southern China in 2000–2015," Sustainability, MDPI, vol. 12(23), pages 1-14, December.
    6. Marie Lassalas & Sabine Duvaleix & Laure Latruffe, 2024. "The technical and economic effects of biodiversity standards on wheat production," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 51(2), pages 275-308.
    7. Coronese, Matteo & Occelli, Martina & Lamperti, Francesco & Roventini, Andrea, 2023. "AgriLOVE: Agriculture, land-use and technical change in an evolutionary, agent-based model," Ecological Economics, Elsevier, vol. 208(C).
    8. Haidong Zhao & Lina Zhang & M. B. Kirkham & Stephen M. Welch & John W. Nielsen-Gammon & Guihua Bai & Jiebo Luo & Daniel A. Andresen & Charles W. Rice & Nenghan Wan & Romulo P. Lollato & Dianfeng Zheng, 2022. "U.S. winter wheat yield loss attributed to compound hot-dry-windy events," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Kamini Yadav & Hatim M. E. Geli, 2021. "Prediction of Crop Yield for New Mexico Based on Climate and Remote Sensing Data for the 1920–2019 Period," Land, MDPI, vol. 10(12), pages 1-27, December.
    10. Michelson, Hope & Fairbairn, Anna & Ellison, Brenna & Maertens, Annemie & Manyong, Victor, 2021. "Misperceived quality: Fertilizer in Tanzania," Journal of Development Economics, Elsevier, vol. 148(C).
    11. Margaux Lapierre & Alexandre Sauquet & Julie Subervie, 2019. "Providing technical assistance to peer networks to reduce pesticide use in Europe: Evidence from the French Ecophyto plan," Working Papers hal-02190979, HAL.
    12. Fritz, Steffen & See, Linda & Bayas, Juan Carlos Laso & Waldner, François & Jacques, Damien & Becker-Reshef, Inbal & Whitcraft, Alyssa & Baruth, Bettina & Bonifacio, Rogerio & Crutchfield, Jim & Rembo, 2019. "A comparison of global agricultural monitoring systems and current gaps," Agricultural Systems, Elsevier, vol. 168(C), pages 258-272.
    13. Xiaolin Yang & Jinran Xiong & Taisheng Du & Xiaotang Ju & Yantai Gan & Sien Li & Longlong Xia & Yanjun Shen & Steven Pacenka & Tammo S. Steenhuis & Kadambot H. M. Siddique & Shaozhong Kang & Klaus But, 2024. "Diversifying crop rotation increases food production, reduces net greenhouse gas emissions and improves soil health," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    14. Jean‐Paul Chavas & Giorgia Rivieccio & Salvatore Di Falco & Giovanni De Luca & Fabian Capitanio, 2022. "Agricultural diversification, productivity, and food security across time and space," Agricultural Economics, International Association of Agricultural Economists, vol. 53(S1), pages 41-58, November.
    15. Anika Reetsch & Kai Schwärzel & Christina Dornack & Shadrack Stephene & Karl-Heinz Feger, 2020. "Optimising Nutrient Cycles to Improve Food Security in Smallholder Farming Families—A Case Study from Banana-Coffee-Based Farming in the Kagera Region, NW Tanzania," Sustainability, MDPI, vol. 12(21), pages 1-34, November.
    16. Benedykt Pepliński & Wawrzyniec Czubak, 2021. "The Influence of Opencast Lignite Mining Dehydration on Plant Production—A Methodological Study," Energies, MDPI, vol. 14(7), pages 1-29, March.
    17. Larson,Donald F. & Muraoka,Rie & Otsuka,Keijiro, 2016. "On the central role of small farms in African rural development strategies," Policy Research Working Paper Series 7710, The World Bank.
    18. Anna Florence & Andrew Revill & Stephen Hoad & Robert Rees & Mathew Williams, 2021. "The Effect of Antecedence on Empirical Model Forecasts of Crop Yield from Observations of Canopy Properties," Agriculture, MDPI, vol. 11(3), pages 1-16, March.
    19. Hyun Jin Jung & Hyun Kwak & Jinyoung Chun & Kyeong Keun Oh, 2021. "Alkaline Fractionation and Subsequent Production of Nano-Structured Silica and Cellulose Nano-Fibrils for the Comprehensive Utilization of Rice Husk," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    20. Gao, Yukun & Zhao, Hongfang & Zhao, Chuang & Hu, Guohua & Zhang, Han & Liu, Xue & Li, Nan & Hou, Haiyan & Li, Xia, 2022. "Spatial and temporal variations of maize and wheat yield gaps and their relationships with climate in China," Agricultural Water Management, Elsevier, vol. 270(C).

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:jasjnl:v:11:y:2024:i:3:p:453. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.