IDEAS home Printed from https://ideas.repec.org/a/ibn/jasjnl/v11y2024i1p105.html
   My bibliography  Save this article

Effects of Different Plastic Mulching Methods on Soil Water, Temperature and Nitrate Accumulation in a Dryland Winter Wheat Field

Author

Listed:
  • Hui-Zhou Gao
  • Ying-He Xie
  • Ting-Liang Li
  • Xiao-Dong Zhao
  • Gao Yu
  • Li Yue
  • Wu-Bin Jia

Abstract

This study has investigated the effects of two different plastic mulching methods on soil water, temperature, and nitrate (NO3-N) accumulation in a dryland winter wheat field after one-year experiment. The drought-resistant wheat (Triticum aestivum) variety Chang-8744 was grown by (i) furrow planting with ridge mulching, (ii) bunch planting with flat mulching, and (iii) conventional flat planting without mulching (or control). Results showed that dryland winter wheat effectively utilized soil water down to 2 m depth, mainly in the first 140 cm. Plastic mulching increased the evapotranspiration during wheat growing season and mostly r flat plastic mulching, by ~18% over the value recorded in the control plots. Soil temperature of the 20-40 cm-layer was higher than the one recorded at 5-10 cm depth during seedling-overwintering stages. Ridge plastic mulching and flat plastic mulching increased soil temperatures at 5 cm, 10 cm, and 40 cm depths during seedling–overwintering stages with reference to the control (no mulching), then lowered them at the same depths during reviving–ripening stages. Residual NO3-N was always detected in the soil after harvesting irrespective of the mulching method. It was mainly concentrated in the first -60 cm accounting for ~50% of soil NO3-N accumulation within the 2-m profile. The highest soil NO3-N accumulation occurred under flat plastic mulching, which represented ~107% of the mean value of the remaining treatments. Finally, flat plastic mulching showed the greatest effects on soil water, temperature, and NO3-N accumulation in dryland wheat field.

Suggested Citation

  • Hui-Zhou Gao & Ying-He Xie & Ting-Liang Li & Xiao-Dong Zhao & Gao Yu & Li Yue & Wu-Bin Jia, 2024. "Effects of Different Plastic Mulching Methods on Soil Water, Temperature and Nitrate Accumulation in a Dryland Winter Wheat Field," Journal of Agricultural Science, Canadian Center of Science and Education, vol. 11(1), pages 105-105, April.
  • Handle: RePEc:ibn:jasjnl:v:11:y:2024:i:1:p:105
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/jas/article/download/0/0/37760/38144
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/jas/article/view/0/37760
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chakraborty, Debashis & Nagarajan, Shantha & Aggarwal, Pramila & Gupta, V.K. & Tomar, R.K. & Garg, R.N. & Sahoo, R.N. & Sarkar, A. & Chopra, U.K. & Sarma, K.S. Sundara & Kalra, N., 2008. "Effect of mulching on soil and plant water status, and the growth and yield of wheat (Triticum aestivum L.) in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 95(12), pages 1323-1334, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdul Waheed & Chuang Li & Murad Muhammad & Mushtaq Ahmad & Khalid Ali Khan & Hamed A. Ghramh & Zhongwei Wang & Daoyuan Zhang, 2023. "Sustainable Potato Growth under Straw Mulching Practices," Sustainability, MDPI, vol. 15(13), pages 1-16, July.
    2. Xiaoyi Jiang & Dandong Mao & Min Zhu & Xingchun Wang & Chunyan Li & Xinkai Zhu & Wenshan Guo & Jinfeng Ding, 2022. "Evaluating the Waterlogging Tolerance of Wheat Cultivars during the Early Growth Stage Using the Comprehensive Evaluation Value and Digital Image Analysis," Agriculture, MDPI, vol. 12(3), pages 1-15, March.
    3. Choudhury, B.U. & Singh, Anil Kumar & Pradhan, S., 2013. "Estimation of crop coefficients of dry-seeded irrigated rice–wheat rotation on raised beds by field water balance method in the Indo-Gangetic plains, India," Agricultural Water Management, Elsevier, vol. 123(C), pages 20-31.
    4. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2014. "Comparative evaluation of crop water use efficiency, economic analysis and net household profit simulation in arid Northwest China," Agricultural Water Management, Elsevier, vol. 146(C), pages 335-345.
    5. Liu, Zihan & Cai, Lu & Dong, Qinge & Zhao, Xiaoli & Han, Jianqiao, 2022. "Effects of microplastics on water infiltration in agricultural soil on the Loess Plateau, China," Agricultural Water Management, Elsevier, vol. 271(C).
    6. Jiansheng Ye & Changan Liu, 2012. "Suitability of Mulch and Ridge-furrow Techniques for Maize across the Precipitation Gradient on the Chinese Loess Plateau," Journal of Agricultural Science, Canadian Center of Science and Education, vol. 4(10), pages 182-182, August.
    7. Balwinder-Singh & Eberbach, P.L. & Humphreys, E. & Kukal, S.S., 2011. "The effect of rice straw mulch on evapotranspiration, transpiration and soil evaporation of irrigated wheat in Punjab, India," Agricultural Water Management, Elsevier, vol. 98(12), pages 1847-1855, October.
    8. Zhao, Hong & Xiong, You-Cai & Li, Feng-Min & Wang, Run-Yuan & Qiang, Sheng-Cai & Yao, Tao-Feng & Mo, Fei, 2012. "Plastic film mulch for half growing-season maximized WUE and yield of potato via moisture-temperature improvement in a semi-arid agroecosystem," Agricultural Water Management, Elsevier, vol. 104(C), pages 68-78.
    9. Wang, Jun & Ghimire, Rajan & Fu, Xin & Sainju, Upendra M. & Liu, Wenzhao, 2018. "Straw mulching increases precipitation storage rather than water use efficiency and dryland winter wheat yield," Agricultural Water Management, Elsevier, vol. 206(C), pages 95-101.
    10. Jia, Qianmin & Sun, Lefeng & Mou, Hongyan & Ali, Shahzad & Liu, Donghua & Zhang, Yan & Zhang, Peng & Ren, Xiaolong & Jia, Zhikuan, 2018. "Effects of planting patterns and sowing densities on grain-filling, radiation use efficiency and yield of maize (Zea mays L.) in semi-arid regions," Agricultural Water Management, Elsevier, vol. 201(C), pages 287-298.
    11. Gao, Haihe & Yan, Changrong & Liu, Qin & Li, Zhen & Yang, Xiao & Qi, Ruimin, 2019. "Exploring optimal soil mulching to enhance yield and water use efficiency in maize cropping in China: A meta-analysis," Agricultural Water Management, Elsevier, vol. 225(C).
    12. Rasool, Ghulam & Guo, Xiangping & Wang, Zhenchang & Ali, Muhammad Usman & Chen, Sheng & Zhang, Shuxuan & Wu, Qijin & Ullah, Muhammad Saif, 2020. "Coupling fertigation and buried straw layer improves fertilizer use efficiency, fruit yield, and quality of greenhouse tomato," Agricultural Water Management, Elsevier, vol. 239(C).
    13. Saglam, Mustafa & Sintim, Henry Y. & Bary, Andy I. & Miles, Carol A. & Ghimire, Shuresh & Inglis, Debra A. & Flury, Markus, 2017. "Modeling the effect of biodegradable paper and plastic mulch on soil moisture dynamics," Agricultural Water Management, Elsevier, vol. 193(C), pages 240-250.
    14. Ali, Shahzad & Xu, Yueyue & Ahmad, Irshad & Jia, Qianmin & Ma, Xiangcheng & Ullah, Hidayat & Alam, Mukhtar & Adnan, Muhammad & Daur, Ihsanullah & Ren, Xiaolong & Cai, Tie & Zhang, Jiahua & Jia, Zhikua, 2018. "Tillage and deficit irrigation strategies to improve winter wheat production through regulating root development under simulated rainfall conditions," Agricultural Water Management, Elsevier, vol. 209(C), pages 44-54.
    15. Fan, Yubing & Wang, Chenggang & Nan, Zhibiao, 2018. "Determining water use efficiency of wheat and cotton: A meta-regression analysis," Agricultural Water Management, Elsevier, vol. 199(C), pages 48-60.
    16. Lei Yang & Min Wang & Shuang Li & Jianjun Yu & Yang Chen & Haijian Yang & Wu Wang & Hao Chen & Lin Hong, 2023. "Effect of Different Mulching Practices on Bacterial Community Composition and Fruit Quality in a Citrus Orchard," Agriculture, MDPI, vol. 13(10), pages 1-19, September.
    17. Yang, Kaijing & Wang, Fengxin & Shock, Clinton C. & Kang, Shaozhong & Huo, Zailin & Song, Na & Ma, Dan, 2017. "Potato performance as influenced by the proportion of wetted soil volume and nitrogen under drip irrigation with plastic mulch," Agricultural Water Management, Elsevier, vol. 179(C), pages 260-270.
    18. Chai, Yuwei & Chai, Qiang & Yang, Changgang & Chen, Yuzhang & Li, Rui & Li, Yawei & Chang, Lei & Lan, Xuemei & Cheng, Hongbo & Chai, Shouxi, 2022. "Plastic film mulching increases yield, water productivity, and net income of rain-fed winter wheat compared with no mulching in semiarid Northwest China," Agricultural Water Management, Elsevier, vol. 262(C).
    19. Zhou, Lifeng & He, Jianqiang & Qi, Zhijuan & Dyck, Miles & Zou, Yufeng & Zhang, Tibin & Feng, Hao, 2018. "Effects of lateral spacing for drip irrigation and mulching on the distributions of soil water and nitrate, maize yield, and water use efficiency," Agricultural Water Management, Elsevier, vol. 199(C), pages 190-200.
    20. Liu, S. & Yang, J.Y. & Zhang, X.Y. & Drury, C.F. & Reynolds, W.D. & Hoogenboom, G., 2013. "Modelling crop yield, soil water content and soil temperature for a soybean–maize rotation under conventional and conservation tillage systems in Northeast China," Agricultural Water Management, Elsevier, vol. 123(C), pages 32-44.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:jasjnl:v:11:y:2024:i:1:p:105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.