Author
Listed:
- Davi Marcondes Rocha
- Lúcia Helena Pereira Nóbrega
- Daiane Bernardi
- Giuvane Conti
- Evandro Alves Nakajima
- Magnos Fernando Ziech
- Claudio Leones Bazzi
Abstract
The quality of the soybean seed can be influenced by several factors that may occur at any stage of production. Mechanical damage, deterioration by humidity and the damage caused by bed bugs are among such problems. The tetrazolium test is adopted by the seed industry, especially for testing soybeans, due to its accuracy, fast result, and the large amount of information it provides. Digital processing and image analysis can be used to aid the extraction and classification of standards for minimizing the subjectivity implicit in the test, thus allowing more credibility to the information. The aim of this work is testing the effectiveness of Random Forests in the supervised classification of soybean embryos images submitted to the tetrazolium test. In order to do so, we used the Trainable Weka Segmentation plugin to perform the segmentation process, and the WEKA software to evaluate the quality of the classifier model obtained. During the process, 222,646 instances among 230,388 instances were correctly classified (96.7%), with Kappa index of 0.95, showing the classifier excellent performance regarding the proposed dataset. The supervised classification, combined with pixel-based segmentation, proved to be efficient in extracting more coherent visual information on seed damage. Also, we conclude that the choice of image attributes, along with the algorithm used in the work, showed to be competent in the classification process of high dimensionality samples.
Suggested Citation
Davi Marcondes Rocha & Lúcia Helena Pereira Nóbrega & Daiane Bernardi & Giuvane Conti & Evandro Alves Nakajima & Magnos Fernando Ziech & Claudio Leones Bazzi, 2024.
"Random Forests in the Supervised Classification of Multidimensional Images of the Tetrazolium Test,"
Journal of Agricultural Science, Canadian Center of Science and Education, vol. 11(15), pages 115-115, April.
Handle:
RePEc:ibn:jasjnl:v:11:y:2024:i:15:p:115
Download full text from publisher
More about this item
JEL classification:
- R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
- Z0 - Other Special Topics - - General
Statistics
Access and download statistics
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:jasjnl:v:11:y:2024:i:15:p:115. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.