Author
Listed:
- J. Ayiga-Aluba
- G. Asea
- D. B. Kwemoi
- G. Tusiime
- R. Edema
Abstract
Stability in performance is important for determining adaptation and recommendation of pre-commercial crop varieties. This study was conducted with the following objectives- i) to determine stability of grain yield for 55 quality protein maize (QPM) single cross hybrids generated from 14 inbred lines ii) to determine the pattern of grouping of QPM hybrids and test environments based on grain yield response. The test hybrids were generated during the second season of 2015 and evaluated in three agro-ecological zones during the first season of 2016. Two checks were used- Longe 5D, a popular QPM hybrid and a top cross of Longe 5D with CML511. Additive main effects and multiplicative interaction (AMMI) and genotype and genotype by environment interaction (GGE) analyses were used to assess the stability of the hybrids. Results showed highly significant differences between genotypes, environments and GEI. The first principal component axis (IPCAI) was significant (p < 0.01) and accounted for 61.5% of the interaction effect. Both (IPCAI) and IPCAII) cumulatively contributed to entire degrees of freedom available for interaction component. Hybrid QPMSC-29 had the highest grain yield across environments. The AMMI biplot clearly depicted the genotypes on the bases of their adaptation patterns. Hybrids QPMSC-43, QPMSC-12, QPMSC-18 and QPMSC-29 were found to be more stable and responsive to favorable environments. Among them QPMSC-18 was more stable across locations. The AMMI biplot successfully identified 2 mega-environments as Namulonge and Bulindi in the first mega-environment with QPMSC-29 as the winning genotype and Masaka as the second mega-environment with QPMSC-10 as the winning genotypes. Hybrid, QPMSC-46 was an ideal genotype with above average score for grain yield. The single cross hybrids QPMSC-29, QPMSC-18 and QPMSC-10 were identified as stable yielder across environments in addition to higher yield. These hybrids can be recommended for all the three locations, for cultivation.
Suggested Citation
J. Ayiga-Aluba & G. Asea & D. B. Kwemoi & G. Tusiime & R. Edema, 2018.
"Grain Yield Performance and Stability of Quality Protein Maize Single Cross Hybrids in Mid-altitude Environment in Uganda,"
Journal of Agricultural Science, Canadian Center of Science and Education, vol. 10(9), pages 1-55, August.
Handle:
RePEc:ibn:jasjnl:v:10:y:2018:i:9:p:55
Download full text from publisher
More about this item
JEL classification:
- R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
- Z0 - Other Special Topics - - General
Statistics
Access and download statistics
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:jasjnl:v:10:y:2018:i:9:p:55. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.