Author
Listed:
- Charles Webber III
- Paul White Jr.
- James Shrefler
- Douglas Spaunhorst
Abstract
Acetic acid (CH3COOH) is produced naturally through anaerobic fermentation (vinegar) or synthesized through various industrial chemical methods. The primary components of vinegar are water and acetic acid. Acetic acid can destroy cell membranes, which then can result in plant tissue desiccation and plant death. Therefore, vinegar has the potential as a natural contact herbicide for the control of weeds in organically produced crops. Additional information is needed to determine the influence of acetic acid concentration, application volume, and adjuvants on weed control. Typically, household vinegar contains 5% acetic acid and greater acetic acid concentrations are available commercially. Field research was conducted in southeast Oklahoma (Lane, OK) to determine the effect of acetic acid concentrations, application volumes, and adjuvants on weed control efficacy. The factorial experimental design included three acetic acid concentrations (0, 5 and 20%), two sprayer application volumes (187 and 935 L/ha), three adjuvants (none, orange oil, and canola oil), and one weedy-check. The experiment was repeated twice. Visual weed cover and control ratings were collected 4 days after treatment. The experiment had very high weed densities with multiple grass and broadleaf weed species. The weedy check average weed cover percentages were 98% total weeds, 53% grass, 44% broadleaf weeds, 52% large crabgrass (Digitaria sanguinalis (L.), 25% carpetweed (Mollugo verticillata L.), and 14% cutleaf evening primrose (Oenothera laciniata Hill). Total weed control ranged from 0% control (no acetic acid) to 74% control (20% acetic acid, 935 L/ha, & canola oil). Acetic acid was more effective in controlling broadleaf weeds than in controlling grasses. Optimum total grass and crabgrass weed control occurred with 20% acetic acid applied at 935 L/ha, resulting in weed control that ranged from 44% to 63%. Broadleaf weed control was 84% or greater for plots receiving either 10% acetic acid applied at 935 L/ha or 20% acetic acid applied at 187 or 935 L/ha. In addition, 5% acetic acid applied at 187 L/ha provided good cutleaf evening primrose control (77% to 90%). When averaged across application volumes (187 and 935 L/ha) and adjuvants (none, orange oil, and canola oil), weed control increased for all species as acetic acid concentrations increased from 5% to 20%. When averaged across acetic acid concentrations and adjuvants, weed control increased as application volumes increased from 187 to 935 L/ha. Individual comparisons among adjuvants within acetic acid concentrations and application volumes showed little or no advantage to adding either orange oil or canola oil to vinegar spray solutions.
Suggested Citation
Charles Webber III & Paul White Jr. & James Shrefler & Douglas Spaunhorst, 2018.
"Impact of Acetic Acid Concentration, Application Volume, and Adjuvants on Weed Control Efficacy,"
Journal of Agricultural Science, Canadian Center of Science and Education, vol. 10(8), pages 1-1, July.
Handle:
RePEc:ibn:jasjnl:v:10:y:2018:i:8:p:1
Download full text from publisher
More about this item
JEL classification:
- R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
- Z0 - Other Special Topics - - General
Statistics
Access and download statistics
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:jasjnl:v:10:y:2018:i:8:p:1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.