Author
Listed:
- Debora Silva
- Juliane Toledo
- Flaviani Pierdoná
- Gabriel Alves
- Michelle de André
- Natalia Pires
- ThaÃs Cipriano
- Fernando Torres
- Conceição Silveira
- Francisco Aragão
- Luiz Pereira
Abstract
Allelopathy involves the release of compounds into the environment that affects the growth and development of other organisms. This phenomenon may lead to the production of compounds less harmful to the environment than traditional herbicides used in weed control. In plants, terpenes have been identified as components of allelochemicals and are synthesized by enzymes named as geranylgeranyl diphosphate synthases (GGPPS). There are about 12 GGPPS genes in Arabidopsis, among which is GGR. This work aims to study the association between the expression levels of GGR and the allelopathic response of sesame seedlings to Arabidopsis leaf extracts. Hence, the GGR gene was inserted into Arabidopsis with the purpose to investigate the allelopathic effects of GGR expression levels on sesame seedlings. GGR expression levels were quantified by RT-PCR in both transgenic and non-transgenic [wild-type (WT)] lines. It has been observed that both wild-type and GGR expressing transgenic lines inhibited the growth of sesame seedlings. However, it is noteworthy that the phytotoxicity of extracts from GGR lines were greater than WT extracts. RT-PCR analysis of GGR expression revealed that WT plants had higher levels of GGR expression than GGR transgenic lines, which suggests that a homologous-dependent gene silencing (HDGS) occurred in GGR lines. GGR is part of an enzyme complex that works as a hub that determines the types of terpenes produced in Arabidopsis chloroplasts. The present data indicates that decreases in GGR expression may have favoured the production of terpenes with stronger allelopathic capacity in Arabidopsis leaves.
Suggested Citation
Debora Silva & Juliane Toledo & Flaviani Pierdoná & Gabriel Alves & Michelle de André & Natalia Pires & ThaÃs Cipriano & Fernando Torres & Conceição Silveira & Francisco Aragão & Luiz Pereira, 2018.
"GGR (Geranylgeranyl Reductase) Expression Affects the Allelopathic Response to Arabidopsis Allelochemicals,"
Journal of Agricultural Science, Canadian Center of Science and Education, vol. 10(7), pages 122-122, June.
Handle:
RePEc:ibn:jasjnl:v:10:y:2018:i:7:p:122
Download full text from publisher
More about this item
JEL classification:
- R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
- Z0 - Other Special Topics - - General
Statistics
Access and download statistics
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:jasjnl:v:10:y:2018:i:7:p:122. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.