Author
Listed:
- Ã caro Nascimento
- Raimundo Assis Júnior
- José Araújo
- Thiago Alencar
- Alcione Freire
- Márcio Godofrêdo Lobato
- Cillas Silva
- Jaedson Claúdio Mota
- Carla Danielle Nascimento
Abstract
Soil water retention curve (SWRC) becomes important because it guides when and how much to irrigate, optimizing the use of water; can be obtained in the field or laboratory, being commonly determined in the laboratory with porous plate apparatus, and the determination is compromised by issues such as time and labor. In this context, inverse modeling emerges, which allows to obtain a variable going from the effect to the cause, using Hydrus-1D. Hence, this study aims to obtain van Genuchten equation parameters through inverse modeling with Hydrus-1D and make the respective comparisons and inferences. Matric potential data were obtained over time in an instantaneous profile-type experiment. Six sets of three tensiometers each were installed surrounding the center of the experimental plot, at depths of 0.20, 0.35 and 0.50 m. Target depth was 0.35 m, where the roots of most crops are concentrated, and the other tensiometers were used to obtain the potential gradient. Matric potential data were used to feed Hydrus-1D and obtain the van Genuchten equation parameters. Laboratory curves were obtained using porous plate apparatus, with four replicates. It was concluded that, in general, the Hydrus-1D model estimates van Genuchten equation parameters and, consequently, the SWCC of an Argissolo more consistently with field conditions than those obtained in the laboratory; and, provided it is fed with field data, the Hydrus-1D simulates well the behavior of matric potential and moisture over time, reducing the time and labor in the procedures to obtain van Genuchten equation parameters in the laboratory.
Suggested Citation
à caro Nascimento & Raimundo Assis Júnior & José Araújo & Thiago Alencar & Alcione Freire & Márcio Godofrêdo Lobato & Cillas Silva & Jaedson Claúdio Mota & Carla Danielle Nascimento, 2018.
"Estimation of van Genuchten Equation Parameters in Laboratory and through Inverse Modeling with Hydrus-1D,"
Journal of Agricultural Science, Canadian Center of Science and Education, vol. 10(3), pages 102-102, February.
Handle:
RePEc:ibn:jasjnl:v:10:y:2018:i:3:p:102
Download full text from publisher
More about this item
JEL classification:
- R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
- Z0 - Other Special Topics - - General
Statistics
Access and download statistics
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:jasjnl:v:10:y:2018:i:3:p:102. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.