Author
Listed:
- Jairo Azevedo Junior
- Tarcisio Gonçalves
- José de Souza
- Mary Ana Rodriguez
- Cláudio Costa
- Júlio Gil Carvalheira
Abstract
Random regression models (RRM) differ in terms of the functions used to describe the shape of lactation curves. The aim was to compare random regression models under different functions to describe the lactation curves from Holstein cows in herds of the state of Minas Gerais. A database of 28,118 production records was analyzed using the test-day records of 4,230 first parity cows from five herds. The Wilmink, Ali & Schaeffer and Legendre polynomial (orders 4, 5 and 6) functions were adjusted in RRM to model the mean production trend (fixed) and genetic and permanent environmental (random) effects. The residual variances were assumed to be constant throughout lactation. Analyses were performed using the AIREMLF90 program. Except for the model with the polynomial function of order 5, all models converged. The Wilmink function showed lower values for criteria based on the -2log (L), AIC and BIC. The model with the Legendre polynomial of order 6 showed lower residual variance. Heritability estimates were similar between functions, ranging from 0.07 to 0.18 and were higher from 215 days of lactation. From 155 days of lactation, genetic and permanent environmental correlations between successive controls are of high magnitude. The Wilmink function is the most suitable for the study of milk yields from primiparous Holstein cows. The selection of animals is possible from 155 days of lactation on. Permanent environmental effects have greater influence on the milk production at the end of lactation of primiparous cows and should be considered since they are important and may be cumulative throughout lactation.
Suggested Citation
Jairo Azevedo Junior & Tarcisio Gonçalves & José de Souza & Mary Ana Rodriguez & Cláudio Costa & Júlio Gil Carvalheira, 2018.
"Adjustment of Lactation Curves of Holstein Cows from Herds of Minas Gerais, Brazil,"
Journal of Agricultural Science, Canadian Center of Science and Education, vol. 10(2), pages 1-1, January.
Handle:
RePEc:ibn:jasjnl:v:10:y:2018:i:2:p:1
Download full text from publisher
More about this item
JEL classification:
- R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
- Z0 - Other Special Topics - - General
Statistics
Access and download statistics
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:jasjnl:v:10:y:2018:i:2:p:1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.