IDEAS home Printed from https://ideas.repec.org/a/ibn/ijspjl/v8y2019i3p83.html
   My bibliography  Save this article

A Boundary Corrected Non-Parametric Regression Estimator for Finite Population Total

Author

Listed:
  • Langat Reuben Cheruiyot
  • Odhiambo Romanus Otieno
  • George O. Orwa

Abstract

This study explores the estimation of finite population total. For many years design-based approach dominated the scene in statistical inference in sample surveys. The scenario has since changed with emergence of the other approaches (Model-Based, Model-Assisted and the Randomization-Assisted), which have proved to rival the conventional approach. This paper focuses on a model based approach. Within this framework a nonparametric regression estimator for finite population total is developed. The nonparametric technique has been found from previous studies to be advantageous than its parametric counterpart in terms of robustness and flexibility. Kernel smoother has been used in construction of the estimator. The challenge of the boundary problem encountered with the Nadaraya-Watson estimator has been addressed by modifying it using reflection technique. The performance of the proposed estimator has been compared to the design-based Horvitz Thompson estimator and the model –based nonparametric regression estimator proposed by (Dorfman, 1992) and the ratio estimator using simulated data.

Suggested Citation

  • Langat Reuben Cheruiyot & Odhiambo Romanus Otieno & George O. Orwa, 2019. "A Boundary Corrected Non-Parametric Regression Estimator for Finite Population Total," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 8(3), pages 1-83, November.
  • Handle: RePEc:ibn:ijspjl:v:8:y:2019:i:3:p:83
    as

    Download full text from publisher

    File URL: http://www.ccsenet.org/journal/index.php/ijsp/article/download/0/0/39229/40112
    Download Restriction: no

    File URL: http://www.ccsenet.org/journal/index.php/ijsp/article/view/0/39229
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Masayuki Hirukawa & Mari Sakudo, 2015. "Family of the generalised gamma kernels: a generator of asymmetric kernels for nonnegative data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(1), pages 41-63, March.
    2. M. Luz Gámiz & K. B. Kulasekera & Nikolaos Limnios & Bo Henry Lindqvist, 2011. "Applied Nonparametric Statistics in Reliability," Springer Series in Reliability Engineering, Springer, number 978-0-85729-118-9, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ouimet, Frédéric & Tolosana-Delgado, Raimon, 2022. "Asymptotic properties of Dirichlet kernel density estimators," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    2. Masayuki Hirukawa & Mari Sakudo, 2016. "Testing Symmetry of Unknown Densities via Smoothing with the Generalized Gamma Kernels," Econometrics, MDPI, vol. 4(2), pages 1-27, June.
    3. Yasmina Ziane & Nabil Zougab & Smail Adjabi, 2018. "Birnbaum–Saunders power-exponential kernel density estimation and Bayes local bandwidth selection for nonnegative heavy tailed data," Computational Statistics, Springer, vol. 33(1), pages 299-318, March.
    4. Gámiz, María Luz & Mammen, Enno & Martínez-Miranda, María Dolores & Nielsen, Jens Perch, 2022. "Missing link survival analysis with applications to available pandemic data," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
    5. Funke, Benedikt & Kawka, Rafael, 2015. "Nonparametric density estimation for multivariate bounded data using two non-negative multiplicative bias correction methods," Computational Statistics & Data Analysis, Elsevier, vol. 92(C), pages 148-162.
    6. Bo H. Lindqvist, 2021. "Discussion of “Virtual age, is it real?”," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 37(1), pages 37-40, January.
    7. María Luz Gámiz & Delia Montoro-Cazorla & María del Carmen Segovia-García & Rafael Pérez-Ocón, 2022. "MoMA Algorithm: A Bottom-Up Modeling Procedure for a Modular System under Environmental Conditions," Mathematics, MDPI, vol. 10(19), pages 1-19, September.
    8. Lynda Harfouche & Smail Adjabi & Nabil Zougab & Benedikt Funke, 2018. "Multiplicative bias correction for discrete kernels," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(2), pages 253-276, June.
    9. Doho, Libaud Rudy Aurelien & Somé, Sobom Matthieu & Banto, Jean Michel, 2023. "Inflation and west African sectoral stock price indices: An asymmetric kernel method analysis," Emerging Markets Review, Elsevier, vol. 54(C).
    10. Funke, Benedikt & Hirukawa, Masayuki, 2019. "Nonparametric estimation and testing on discontinuity of positive supported densities: a kernel truncation approach," Econometrics and Statistics, Elsevier, vol. 9(C), pages 156-170.
    11. Funke, Benedikt & Hirukawa, Masayuki, 2021. "Bias correction for local linear regression estimation using asymmetric kernels via the skewing method," Econometrics and Statistics, Elsevier, vol. 20(C), pages 109-130.
    12. Kakizawa, Yoshihide, 2022. "Multivariate elliptical-based Birnbaum–Saunders kernel density estimation for nonnegative data," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    13. Célestin C. Kokonendji & Sobom M. Somé, 2021. "Bayesian Bandwidths in Semiparametric Modelling for Nonnegative Orthant Data with Diagnostics," Stats, MDPI, vol. 4(1), pages 1-22, March.
    14. Ouimet, Frédéric, 2022. "A symmetric matrix-variate normal local approximation for the Wishart distribution and some applications," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    15. Malefaki, Sonia & Limnios, Nikolaos & Dersin, Pierre, 2014. "Reliability of maintained systems under a semi-Markov setting," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 282-290.
    16. Kakizawa, Yoshihide, 2021. "A class of Birnbaum–Saunders type kernel density estimators for nonnegative data," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    17. Hirukawa, Masayuki & Sakudo, Mari, 2019. "Another bias correction for asymmetric kernel density estimation with a parametric start," Statistics & Probability Letters, Elsevier, vol. 145(C), pages 158-165.
    18. Gery Geenens, 2021. "Mellin–Meijer kernel density estimation on $${{\mathbb {R}}}^+$$ R +," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(5), pages 953-977, October.
    19. Gámiz, Maria Luz & Lindqvist, Bo Henry, 2016. "Nonparametric estimation in trend-renewal processes," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 38-46.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:ijspjl:v:8:y:2019:i:3:p:83. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.