IDEAS home Printed from https://ideas.repec.org/a/ibn/ijspjl/v10y2021i1p40.html
   My bibliography  Save this article

Causal Subclassification Tree Algorithm and Robust Causal Effect Estimation via Subclassification

Author

Listed:
  • Tomoshige Nakamura
  • Mihoko Minami

Abstract

In observational studies, the existence of confounding variables should be attended to, and propensity score weighting methods are often used to eliminate their e ects. Although many causal estimators have been proposed based on propensity scores, these estimators generally assume that the propensity scores are properly estimated. However, researchers have found that even a slight misspecification of the propensity score model can result in a bias of estimated treatment effects. Model misspecification problems may occur in practice, and hence, using a robust estimator for causal effect is recommended. One such estimator is a subclassification estimator. Wang, Zhang, Richardson, & Zhou (2020) presented the conditions necessary for subclassification estimators to have $\sqrt{N}$-consistency and to be asymptotically well-defined and suggested an idea how to construct subclasses.

Suggested Citation

  • Tomoshige Nakamura & Mihoko Minami, 2021. "Causal Subclassification Tree Algorithm and Robust Causal Effect Estimation via Subclassification," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(1), pages 1-40, January.
  • Handle: RePEc:ibn:ijspjl:v:10:y:2021:i:1:p:40
    as

    Download full text from publisher

    File URL: http://www.ccsenet.org/journal/index.php/ijsp/article/download/0/0/44329/46727
    Download Restriction: no

    File URL: http://www.ccsenet.org/journal/index.php/ijsp/article/view/0/44329
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kosuke Imai & Marc Ratkovic, 2014. "Covariate balancing propensity score," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 243-263, January.
    2. Xinkun Nie & Stefan Wager, 2017. "Quasi-Oracle Estimation of Heterogeneous Treatment Effects," Papers 1712.04912, arXiv.org, revised Aug 2020.
    3. X Nie & S Wager, 2021. "Quasi-oracle estimation of heterogeneous treatment effects [TensorFlow: A system for large-scale machine learning]," Biometrika, Biometrika Trust, vol. 108(2), pages 299-319.
    4. Alberto Abadie & Guido W. Imbens, 2006. "Large Sample Properties of Matching Estimators for Average Treatment Effects," Econometrica, Econometric Society, vol. 74(1), pages 235-267, January.
    5. Fan Li & Kari Lock Morgan & Alan M. Zaslavsky, 2018. "Balancing Covariates via Propensity Score Weighting," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 390-400, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cousineau, Martin & Verter, Vedat & Murphy, Susan A. & Pineau, Joelle, 2023. "Estimating causal effects with optimization-based methods: A review and empirical comparison," European Journal of Operational Research, Elsevier, vol. 304(2), pages 367-380.
    2. Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
    3. Martin Cousineau & Vedat Verter & Susan A. Murphy & Joelle Pineau, 2022. "Estimating causal effects with optimization-based methods: A review and empirical comparison," Papers 2203.00097, arXiv.org.
    4. Guido Imbens & Yiqing Xu, 2024. "LaLonde (1986) after Nearly Four Decades: Lessons Learned," Papers 2406.00827, arXiv.org, revised Jun 2024.
    5. Lechner, Michael, 2018. "Modified Causal Forests for Estimating Heterogeneous Causal Effects," IZA Discussion Papers 12040, Institute of Labor Economics (IZA).
    6. Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2022. "Covariate distribution balance via propensity scores," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1093-1120, September.
    7. Söhnke M Bartram & Jennifer Conrad & Jongsub Lee & Marti G Subrahmanyam, 2022. "Credit Default Swaps around the World," The Review of Financial Studies, Society for Financial Studies, vol. 35(5), pages 2464-2524.
    8. Phillip Heiler & Michael C. Knaus, 2021. "Effect or Treatment Heterogeneity? Policy Evaluation with Aggregated and Disaggregated Treatments," Papers 2110.01427, arXiv.org, revised Aug 2023.
    9. Susan Athey & Guido W. Imbens, 2017. "The State of Applied Econometrics: Causality and Policy Evaluation," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
    10. Margaret E. Roberts & Brandon M. Stewart & Richard A. Nielsen, 2020. "Adjusting for Confounding with Text Matching," American Journal of Political Science, John Wiley & Sons, vol. 64(4), pages 887-903, October.
    11. Shixiao Zhang & Peisong Han & Changbao Wu, 2023. "Calibration Techniques Encompassing Survey Sampling, Missing Data Analysis and Causal Inference," International Statistical Review, International Statistical Institute, vol. 91(2), pages 165-192, August.
    12. Dmitry Arkhangelsky & Susan Athey & David A. Hirshberg & Guido W. Imbens & Stefan Wager, 2021. "Synthetic Difference-in-Differences," American Economic Review, American Economic Association, vol. 111(12), pages 4088-4118, December.
    13. Byeong Yeob Choi, 2021. "Instrumental variable estimation of truncated local average treatment effects," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-12, April.
    14. Dongcheng Zhang & Kunpeng Zhang, 2020. "Weighting-Based Treatment Effect Estimation via Distribution Learning," Papers 2012.13805, arXiv.org, revised May 2023.
    15. Jason J. Sauppe & Sheldon H. Jacobson, 2017. "The role of covariate balance in observational studies," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(4), pages 323-344, June.
    16. Brian G. Vegetabile & Daniel L. Gillen & Hal S. Stern, 2020. "Optimally balanced Gaussian process propensity scores for estimating treatment effects," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(1), pages 355-377, January.
    17. Kuanhao Jiang & Rajarshi Mukherjee & Subhabrata Sen & Pragya Sur, 2022. "A New Central Limit Theorem for the Augmented IPW Estimator: Variance Inflation, Cross-Fit Covariance and Beyond," Papers 2205.10198, arXiv.org, revised Oct 2022.
    18. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    19. Michael Lechner & Jana Mareckova, 2022. "Modified Causal Forest," Papers 2209.03744, arXiv.org.
    20. Nikolay Doudchenko & Guido W. Imbens, 2016. "Balancing, Regression, Difference-In-Differences and Synthetic Control Methods: A Synthesis," NBER Working Papers 22791, National Bureau of Economic Research, Inc.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:ijspjl:v:10:y:2021:i:1:p:40. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.