IDEAS home Printed from https://ideas.repec.org/a/ibn/ijefaa/v8y2016i7p55.html
   My bibliography  Save this article

Modeling and Analyzing the Mean and Volatility Relationship between Electricity Price Returns and Fuel Market Returns

Author

Listed:
  • Ching-Chun Wei

Abstract

This paper has two objectives. First, we apply the symmetric and asymmetric VAR(1)-BEKK-MGARCH(1.1), VAR(1)-CCC-MGARCH(1,1), VAR(1)-DCC-MGARCH, VAR(1)-VARMA-CCC-MGARCH and VAR(1)- VARMA-DCC-MGARCH models to explore the return and volatility interactions among electricity and other fuel price markets(oil, natural gas, and coal). Second, this paper investigates the importance of not only volatility spillover among energy markets, but also the asymmetric effects of negative and positive shockson the conditional variance of modeling one energy market’s volatility upon the returns of future prices within and across other energy markets. The empirical results display that these models do capture the dynamic structure of the return interactions and volatility spillovers and exhibit statistical significance for own past mean and volatility short-and long-run persistence effects, while there are just a few cross-market effects for each model.

Suggested Citation

  • Ching-Chun Wei, 2016. "Modeling and Analyzing the Mean and Volatility Relationship between Electricity Price Returns and Fuel Market Returns," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 8(7), pages 1-55, July.
  • Handle: RePEc:ibn:ijefaa:v:8:y:2016:i:7:p:55
    as

    Download full text from publisher

    File URL: http://www.ccsenet.org/journal/index.php/ijef/article/download/58663/32613
    Download Restriction: no

    File URL: http://www.ccsenet.org/journal/index.php/ijef/article/view/58663
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chia-Lin Chang & Michael McAleer, 2013. "Ranking journal quality by harmonic mean of ranks: an application to ISI statistics & probability," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 67(1), pages 27-53, February.
    2. Chang, Chia-Lin & McAleer, Michael & Tansuchat, Roengchai, 2011. "Crude oil hedging strategies using dynamic multivariate GARCH," Energy Economics, Elsevier, vol. 33(5), pages 912-923, September.
    3. Chang, Chia-Lin & McAleer, Michael & Tansuchat, Roengchai, 2010. "Analyzing and forecasting volatility spillovers, asymmetries and hedging in major oil markets," Energy Economics, Elsevier, vol. 32(6), pages 1445-1455, November.
    4. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    5. Lanza, Alessandro & Manera, Matteo & McAleer, Michael, 2006. "Modeling dynamic conditional correlations in WTI oil forward and futures returns," Finance Research Letters, Elsevier, vol. 3(2), pages 114-132, June.
    6. Lin, Sharon Xiaowen & Tamvakis, Michael N., 2001. "Spillover effects in energy futures markets," Energy Economics, Elsevier, vol. 23(1), pages 43-56, January.
    7. Gary W. Emery & Qingfeng (Wilson) Liu, 2002. "An analysis of the relationship between electricity and natural‐gas futures prices," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 22(2), pages 95-122, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhong, Yi & Liu, Jiapeng, 2021. "Correlations and volatility spillovers between China and Southeast Asian stock markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 81(C), pages 57-69.
    2. Theodosios Perifanis & Athanasios Dagoumas, 2018. "Price and Volatility Spillovers Between the US Crude Oil and Natural Gas Wholesale Markets," Energies, MDPI, vol. 11(10), pages 1-25, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Chia-Lin & McAleer, Michael & Wang, Yanghuiting, 2018. "Testing Co-Volatility spillovers for natural gas spot, futures and ETF spot using dynamic conditional covariances," Energy, Elsevier, vol. 151(C), pages 984-997.
    2. Halkos, George & Tzirivis, Apostolos, 2018. "Effective energy commodities’ risk management: Econometric modeling of price volatility," MPRA Paper 90781, University Library of Munich, Germany.
    3. Chun, Dohyun & Cho, Hoon & Kim, Jihun, 2019. "Crude oil price shocks and hedging performance: A comparison of volatility models," Energy Economics, Elsevier, vol. 81(C), pages 1132-1147.
    4. Wang, Yudong & Wu, Chongfeng, 2012. "Forecasting energy market volatility using GARCH models: Can multivariate models beat univariate models?," Energy Economics, Elsevier, vol. 34(6), pages 2167-2181.
    5. Matteo Manera & Marcella Nicolini & Ilaria Vignati, 2012. "Returns in commodities futures markets and financial speculation: a multivariate GARCH approach," Quaderni di Dipartimento 170, University of Pavia, Department of Economics and Quantitative Methods.
    6. Yudong Wang & Li Liu, 2016. "Crude oil and world stock markets: volatility spillovers, dynamic correlations, and hedging," Empirical Economics, Springer, vol. 50(4), pages 1481-1509, June.
    7. Massimiliano Caporin & Michael McAleer, 2013. "Ten Things You Should Know About DCC," Documentos de Trabajo del ICAE 2013-12, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    8. Halkos, George E. & Tsirivis, Apostolos S., 2019. "Effective energy commodity risk management: Econometric modeling of price volatility," Economic Analysis and Policy, Elsevier, vol. 63(C), pages 234-250.
    9. Apergis, Nicholas & Payne, James E., 2017. "Volatility Modeling of U.S. Metropolitan Retail Gasoline Prices: An Empirical Note," Journal of Regional Analysis and Policy, Mid-Continent Regional Science Association, vol. 48(2), September.
    10. Massimiliano Caporin & Michael McAleer, 2013. "Ten Things You Should Know about the Dynamic Conditional Correlation Representation," Econometrics, MDPI, vol. 1(1), pages 1-12, June.
    11. Chia-Lin Chang & Michael McAleer & Jiarong Tian, 2019. "Modeling and Testing Volatility Spillovers in Oil and Financial Markets for the USA, the UK, and China," Energies, MDPI, vol. 12(8), pages 1-24, April.
    12. Chang, Chia-Lin & McAleer, Michael & Tansuchat, Roengchai, 2011. "Crude oil hedging strategies using dynamic multivariate GARCH," Energy Economics, Elsevier, vol. 33(5), pages 912-923, September.
    13. Wang, Yudong & Geng, Qianjie & Meng, Fanyi, 2019. "Futures hedging in crude oil markets: A comparison between minimum-variance and minimum-risk frameworks," Energy, Elsevier, vol. 181(C), pages 815-826.
    14. Shen, Yifan & Shi, Xunpeng & Variam, Hari Malamakkavu Padinjare, 2018. "Risk transmission mechanism between energy markets: A VAR for VaR approach," Energy Economics, Elsevier, vol. 75(C), pages 377-388.
    15. Chia-Lin Chang & Chia-Ping Liu & Michael McAleer, 2016. "Volatility Spillovers for Spot, Futures, and ETF Prices in Energy and Agriculture," Tinbergen Institute Discussion Papers 16-046/III, Tinbergen Institute.
    16. Kočenda, Evžen & Moravcová, Michala, 2024. "Frequency volatility connectedness and portfolio hedging of U.S. energy commodities," Research in International Business and Finance, Elsevier, vol. 69(C).
    17. Pan, Zhiyuan & Wang, Yudong & Yang, Li, 2014. "Hedging crude oil using refined product: A regime switching asymmetric DCC approach," Energy Economics, Elsevier, vol. 46(C), pages 472-484.
    18. Yen-Hsien Lee & Ya-Ling Huang & Chun-Yu Wu, 2014. "Dynamic Correlations and Volatility Spillovers between Crude Oil and Stock Index Returns: The Implications for Optimal Portfolio Construction," International Journal of Energy Economics and Policy, Econjournals, vol. 4(3), pages 327-336.
    19. Chang, Chia-Lin & McAleer, Michael & Tansuchat, Roengchai, 2010. "Analyzing and forecasting volatility spillovers, asymmetries and hedging in major oil markets," Energy Economics, Elsevier, vol. 32(6), pages 1445-1455, November.
    20. Lovcha, Yuliya & Perez-Laborda, Alejandro, 2020. "Dynamic frequency connectedness between oil and natural gas volatilities," Economic Modelling, Elsevier, vol. 84(C), pages 181-189.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:ijefaa:v:8:y:2016:i:7:p:55. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.