IDEAS home Printed from https://ideas.repec.org/a/ibn/ibrjnl/v9y2016i4p118-122.html
   My bibliography  Save this article

Literature Review of Customer Service Value and Building Customer Value Model under the Internet Service Situation

Author

Listed:
  • Xin Wang
  • Ming Xu

Abstract

The paper summarizes the study of customer service value at home and abroad, including the connotation of customer service value, analysis of the development history and research content, stage division. Through literature analysis, find out the new research hotspot. On the basis of previous research, the paper build customer value model under the situation of Internet service. In order to carry out further research in academic circles of our country to provide reference and reflection.

Suggested Citation

  • Xin Wang & Ming Xu, 2016. "Literature Review of Customer Service Value and Building Customer Value Model under the Internet Service Situation," International Business Research, Canadian Center of Science and Education, vol. 9(4), pages 118-122, April.
  • Handle: RePEc:ibn:ibrjnl:v:9:y:2016:i:4:p:118-122
    as

    Download full text from publisher

    File URL: http://www.ccsenet.org/journal/index.php/ibr/article/view/57124/31061
    Download Restriction: no

    File URL: http://www.ccsenet.org/journal/index.php/ibr/article/view/57124
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ruth N. Bolton, 1998. "A Dynamic Model of the Duration of the Customer's Relationship with a Continuous Service Provider: The Role of Satisfaction," Marketing Science, INFORMS, vol. 17(1), pages 45-65.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Risselada, Hans & Verhoef, Peter C. & Bijmolt, Tammo H.A., 2010. "Staying Power of Churn Prediction Models," Journal of Interactive Marketing, Elsevier, vol. 24(3), pages 198-208.
    2. Philipp Afèche & Mojtaba Araghi & Opher Baron, 2017. "Customer Acquisition, Retention, and Service Access Quality: Optimal Advertising, Capacity Level, and Capacity Allocation," Manufacturing & Service Operations Management, INFORMS, vol. 19(4), pages 674-691, October.
    3. Polo, Yolanda & Sese, F. Javier & Verhoef, Peter C., 2011. "The Effect of Pricing and Advertising on Customer Retention in a Liberalizing Market," Journal of Interactive Marketing, Elsevier, vol. 25(4), pages 201-214.
    4. A Mukherjee & P Nath & M Pal, 2003. "Resource, service quality and performance triad: a framework for measuring efficiency of banking services," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(7), pages 723-735, July.
    5. Van den Poel, Dirk & Lariviere, Bart, 2004. "Customer attrition analysis for financial services using proportional hazard models," European Journal of Operational Research, Elsevier, vol. 157(1), pages 196-217, August.
    6. Blattberg, Robert C. & Malthouse, Edward C. & Neslin, Scott A., 2009. "Customer Lifetime Value: Empirical Generalizations and Some Conceptual Questions," Journal of Interactive Marketing, Elsevier, vol. 23(2), pages 157-168.
    7. Salimi, Negin & Rezaei, Jafar, 2018. "Evaluating firms’ R&D performance using best worst method," Evaluation and Program Planning, Elsevier, vol. 66(C), pages 147-155.
    8. Garima Malik & A. Sajeevan Rao, 2019. "Extended expectation-confirmation model to predict continued usage of ODR/ride hailing apps: role of perceived value and self-efficacy," Information Technology & Tourism, Springer, vol. 21(4), pages 461-482, December.
    9. Ahrholdt, Dennis C. & Gudergan, Siegfried P. & Ringle, Christian M., 2019. "Enhancing loyalty: When improving consumer satisfaction and delight matters," Journal of Business Research, Elsevier, vol. 94(C), pages 18-27.
    10. Russo, Ivan & Confente, Ilenia & Gligor, David M. & Autry, Chad W., 2016. "To be or not to be (loyal): Is there a recipe for customer loyalty in the B2B context?," Journal of Business Research, Elsevier, vol. 69(2), pages 888-896.
    11. Kim, Jungkeun, 2019. "The impact of different price promotions on customer retention," Journal of Retailing and Consumer Services, Elsevier, vol. 46(C), pages 95-102.
    12. Noel Siu & Tracy Zhang & Cheuk-Ying Yau, 2013. "The Roles of Justice and Customer Satisfaction in Customer Retention: A Lesson from Service Recovery," Journal of Business Ethics, Springer, vol. 114(4), pages 675-686, June.
    13. Louis Geiler & Séverine Affeldt & Mohamed Nadif, 2022. "A survey on machine learning methods for churn prediction," Post-Print hal-03824873, HAL.
    14. G. Tomas M. Hult & Forrest V. Morgeson III & Udit Sharma & Claes Fornell, 2022. "Customer satisfaction and international business: A multidisciplinary review and avenues for research," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 53(8), pages 1695-1733, October.
    15. Inger ROOS & Martin LÖFGREN & Bo EDVARDSSON, 2013. "Customer-Support Service From A Relationship Perspective: Best Practice For Telecom," Management Research and Practice, Research Centre in Public Administration and Public Services, Bucharest, Romania, vol. 5(2), pages 5-21, June.
    16. Eva Ascarza & Bruce G. S. Hardie, 2013. "A Joint Model of Usage and Churn in Contractual Settings," Marketing Science, INFORMS, vol. 32(4), pages 570-590, July.
    17. anonymous, 2006. "Editorial: Thanks to the Many Individuals Who Make Publication of Possible," Marketing Science, INFORMS, vol. 25(4), pages 293-300, 07-08.
    18. Chao Wang & Ilaria Dalla Pozza, 2014. "The antecedents of customer lifetime duration and discounted expected transactions: Discrete-time based transaction data analysis," Working Papers 2014-203, Department of Research, Ipag Business School.
    19. Gómez Fernández, Juan F. & Márquez, Adolfo Crespo & López-Campos, Mónica A., 2016. "Customer-oriented risk assessment in network utilities," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 72-83.
    20. Das, Gopal, 2014. "Factors affecting Indian shoppers׳ attitude and purchase intention: An empirical check," Journal of Retailing and Consumer Services, Elsevier, vol. 21(4), pages 561-569.

    More about this item

    Keywords

    service value; service value measurement; the Internet situation;
    All these keywords.

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:ibrjnl:v:9:y:2016:i:4:p:118-122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.