IDEAS home Printed from https://ideas.repec.org/a/ibn/gjhsjl/v9y2017i11p40.html
   My bibliography  Save this article

Retrospective Analyses of High-risk NPS: Integrative Analyses of PubMed, Drug Fora, and the Surface Web

Author

Listed:
  • Ahmed Al-Imam

Abstract

BACKGROUND- Novel psychoactive substances (NPS) can be classified based on their safety for use into low-risk and high-risk. High-risk NPS can be either lethal or poisonous. Fatalities can be either pharmacological or behavioural-induced, including suicide and homicide.MATERIALS & METHODS- Observational analysis, including retrospective, were implemented across; Google Trends, PubMed/MedLine database; Drug Fora, and the surface web. The aim was to collect data in relation to incidents of intoxication and fatalities caused by forty-seven (47) of the most popular NPS and to infer the high-risk (hazardous) substances. Geo-mapping was also applicable. Inferential analyses were also carried out to deduct data on the different age grouping of (ab)users.RESULTS- Among the most popular NPS substances, nearly half of them were labelled as high-risk due to their relatively high incidence of intoxications and deaths. The substances included; DMA/DOX, MXE, Mescaline, Methylone, Crack, GHB, Benzodiazepines, NBOMe, 2C-B, DMT, Stimulants RCs, Shrooms, Ketamine, Opioids, Heroin, Meth, Speed, LSD, MDMA, and Cocaine. Many of these substances were either psychedelic or dissociative substance. Geo-mapping of use indicated that the top ten contributing countries were; Australia, Canada, United States, United Kingdom, New Zealand, Ireland, Norway, Netherlands, Switzerland, and Estonia. The contribution of the Middle East was insignificant, although data have regularly been noticed originating from Israel, Iran, and Turkey.CONCLUSION- In this study, an unconventional inferential method is suggested for analysis of high-risk NPS; it is based on cross-sectional and longitudinal analysis of data. It relies primarily on data from; the surface web, Google Trends, PubMed/Medline database, and drug fora. This method is not only descriptive but also inferential for age and gender among (ab)users of a diverse array of high-risk NPS substances.

Suggested Citation

  • Ahmed Al-Imam, 2017. "Retrospective Analyses of High-risk NPS: Integrative Analyses of PubMed, Drug Fora, and the Surface Web," Global Journal of Health Science, Canadian Center of Science and Education, vol. 9(11), pages 1-40, November.
  • Handle: RePEc:ibn:gjhsjl:v:9:y:2017:i:11:p:40
    as

    Download full text from publisher

    File URL: http://www.ccsenet.org/journal/index.php/gjhs/article/download/70663/38533
    Download Restriction: no

    File URL: http://www.ccsenet.org/journal/index.php/gjhs/article/view/70663
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hyunyoung Choi & Hal Varian, 2012. "Predicting the Present with Google Trends," The Economic Record, The Economic Society of Australia, vol. 88(s1), pages 2-9, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mioara, POPESCU, 2015. "Construction Of Economic Indicators Using Internet Searches," Annals of Spiru Haret University, Economic Series, Universitatea Spiru Haret, vol. 6(1), pages 25-31.
    2. Francesco Capozza & Ingar Haaland & Christopher Roth & Johannes Wohlfart, 2021. "Studying Information Acquisition in the Field: A Practical Guide and Review," CEBI working paper series 21-15, University of Copenhagen. Department of Economics. The Center for Economic Behavior and Inequality (CEBI).
    3. Tommaso Colussi & Ingo E. Isphording & Nico Pestel, 2021. "Minority Salience and Political Extremism," American Economic Journal: Applied Economics, American Economic Association, vol. 13(3), pages 237-271, July.
    4. Kučerová, Zuzana & Pakši, Daniel & Koňařík, Vojtěch, 2024. "Macroeconomic fundamentals and attention: What drives european consumers’ inflation expectations?," Economic Systems, Elsevier, vol. 48(1).
    5. David W Carter & Scott Crosson & Christopher Liese, 2015. "Nowcasting Intraseasonal Recreational Fishing Harvest with Internet Search Volume," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-18, September.
    6. David H Chae & Sean Clouston & Mark L Hatzenbuehler & Michael R Kramer & Hannah L F Cooper & Sacoby M Wilson & Seth I Stephens-Davidowitz & Robert S Gold & Bruce G Link, 2015. "Association between an Internet-Based Measure of Area Racism and Black Mortality," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-12, April.
    7. C. Douglas Swearingen & Joseph T. Ripberger, 2014. "Google Insights and U.S. Senate Elections: Does Search Traffic Provide a Valid Measure of Public Attention to Political Candidates?," Social Science Quarterly, Southwestern Social Science Association, vol. 95(3), pages 882-893, September.
    8. Nathan, Max & Rosso, Anna, 2014. "Mapping information economy businesses with big data: findings from the UK," LSE Research Online Documents on Economics 60615, London School of Economics and Political Science, LSE Library.
    9. Ishani Chaudhuri & Parthajit Kayal, 2022. "Predicting Power of Ticker Search Volume in Indian Stock Market," Working Papers 2022-214, Madras School of Economics,Chennai,India.
    10. Yang, Xin & Pan, Bing & Evans, James A. & Lv, Benfu, 2015. "Forecasting Chinese tourist volume with search engine data," Tourism Management, Elsevier, vol. 46(C), pages 386-397.
    11. Sansone, Dario, 2019. "Pink work: Same-sex marriage, employment and discrimination," Journal of Public Economics, Elsevier, vol. 180(C).
    12. Pulkit Sharma & Achut Manandhar & Patrick Thomson & Jacob Katuva & Robert Hope & David A. Clifton, 2019. "Combining Multi-Modal Statistics for Welfare Prediction Using Deep Learning," Sustainability, MDPI, vol. 11(22), pages 1-15, November.
    13. John M. Abowd & Ian M. Schmutte & William Sexton & Lars Vilhuber, 2019. "Suboptimal Provision of Privacy and Statistical Accuracy When They are Public Goods," Papers 1906.09353, arXiv.org.
    14. Bentzen, Jeanet Sinding, 2021. "In crisis, we pray: Religiosity and the COVID-19 pandemic," Journal of Economic Behavior & Organization, Elsevier, vol. 192(C), pages 541-583.
    15. Jesse T. Richman & Ryan J. Roberts, 2023. "Assessing Spurious Correlations in Big Search Data," Forecasting, MDPI, vol. 5(1), pages 1-12, February.
    16. Christopher Hansman & Harrison Hong & Áureo de Paula & Vishal Singh, 2020. "A Sticky-Price View of Hoarding," NBER Working Papers 27051, National Bureau of Economic Research, Inc.
    17. Chung-Yi Lin & Shu-Yi Liaw & Chao-Chun Chen & Mao-Yuan Pai & Yuh-Min Chen, 2017. "A computer-based approach for analyzing consumer demands in electronic word-of-mouth," Electronic Markets, Springer;IIM University of St. Gallen, vol. 27(3), pages 225-242, August.
    18. Jacques Bughin, 2015. "Google searches and twitter mood: nowcasting telecom sales performance," Netnomics, Springer, vol. 16(1), pages 87-105, August.
    19. Wesal M. Aldarabseh, 2019. "The Interest in Islamic Finance Contracts in Saudi Arabia as Viewed by Google Trends," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 11(9), pages 1-12, September.
    20. Daniel E. O'Leary, 2024. "Toward an extended framework of exhaust data for predictive analytics: An empirical approach," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(2), June.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:gjhsjl:v:9:y:2017:i:11:p:40. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.