IDEAS home Printed from https://ideas.repec.org/a/ibn/gjhsjl/v11y2019i3p140.html
   My bibliography  Save this article

Seeing is Predicting: Water Clarity-Based Nowcast Models for E. coli Prediction in Surface Water

Author

Listed:
  • Christopher A. Dada

Abstract

Given the 24–48 h turn-around time of conventional surveillance approaches, methods are needed that improve the timeliness and accuracy of recreational water quality risk assessments. Although one useful approach is to combine existing monitoring programmes with predictive faecal indicator bacteria (FIB) models, these models are largely ‘top-down’ in their approach to safeguarding public health. Beyond being simply ‘advised when to avoid swimming’, there is an increasing awareness amongst the general public regarding the role they can play in water quality monitoring. Using quantile, maximum value and optimized incremental modelling approaches, this study reports on the possibility of developing intuitive, public-friendly models that are based on the physical appearance of water (clarity), to estimate 8103 nation-wide E. coli concentrations in rivers, and to assess whether water is safe to swim in. If swimmers were to avoid river waters with <1.1 m black disc visibility during autumn and summer, and river waters with values <0.5 m black disc visibility during spring and winter, they would also avoid microbial hazards that are associated with exceedances of the 540 CFU/100 mL single sample bathing water standard. Regardless of the climatic season, stream order classification, catchment land cover or geology of streams considered, the clarity-based E. coli models performed well as they presented with sensitivity, specificity and accuracy values of at least 72%. The developed models offer the benefit of providing a faster method for estimating E. coli concentration, potentially engaging the public in water monitoring, and allowing them to make informed decisions on whether it is safe to swim.

Suggested Citation

  • Christopher A. Dada, 2019. "Seeing is Predicting: Water Clarity-Based Nowcast Models for E. coli Prediction in Surface Water," Global Journal of Health Science, Canadian Center of Science and Education, vol. 11(3), pages 140-140, March.
  • Handle: RePEc:ibn:gjhsjl:v:11:y:2019:i:3:p:140
    as

    Download full text from publisher

    File URL: http://www.ccsenet.org/journal/index.php/gjhs/article/download/0/0/38681/39336
    Download Restriction: no

    File URL: http://www.ccsenet.org/journal/index.php/gjhs/article/view/0/38681
    Download Restriction: no
    ---><---

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:gjhsjl:v:11:y:2019:i:3:p:140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.