IDEAS home Printed from https://ideas.repec.org/a/ibn/eerjnl/v3y2012i1p158.html
   My bibliography  Save this article

The Financial Viability of Solar Photovoltaic Canopies as Urban Climate Change Mitigation: An Analysis of the Potential Utilization of Public Space in Boston, Massachusetts

Author

Listed:
  • Clayton Hunter
  • James G. Baldwin
  • Michael L. Mann

Abstract

We model the electrical power generation potential, calculate the associated avoided emissions and conduct an economic valuation of a scenario of large scale photovoltaic canopy implementation in metro Boston, Massachusetts on publicly managed parking real-estate operated by the Massachusetts Bay Transit Authority. The results of this work demonstrate that 102.4 MWh of electricity may be generated by such a program which is equal to nearly 13.8% of total electricity demand in the state. Annual CO2, NO and SO2 emissions avoided in this scenario amounts to 53.7 tonnes of CO2, 46.5 kg of NO, and 107.1 kg of SO2. Despite the substantial amount of power production potential we find that such a scenario is not economically viable under current market conditions and using conventional financing mechanisms with a net present value of -1.4 Billion U.S. dollars.

Suggested Citation

  • Clayton Hunter & James G. Baldwin & Michael L. Mann, 2012. "The Financial Viability of Solar Photovoltaic Canopies as Urban Climate Change Mitigation: An Analysis of the Potential Utilization of Public Space in Boston, Massachusetts," Energy and Environment Research, Canadian Center of Science and Education, vol. 3(1), pages 158-158, June.
  • Handle: RePEc:ibn:eerjnl:v:3:y:2012:i:1:p:158
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/eer/article/download/25579/16199
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/eer/article/view/25579
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Menegaki, Angeliki, 2008. "Valuation for renewable energy: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2422-2437, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anabela Botelho & Lina Sofia Lourenço-Gomes & Lígia Costa Pinto & Sara Sousa & Marieta Valente, 2016. "Accounting for local impacts of photovoltaic farms: two stated preferences approaches," NIMA Working Papers 64, Núcleo de Investigação em Microeconomia Aplicada (NIMA), Universidade do Minho.
    2. Huang, Shih-Chieh & Lo, Shang-Lien & Lin, Yen-Ching, 2013. "Application of a fuzzy cognitive map based on a structural equation model for the identification of limitations to the development of wind power," Energy Policy, Elsevier, vol. 63(C), pages 851-861.
    3. Balibrea-Iniesta, José & Rodríguez-Monroy, Carlos & Núñez-Guerrero, Yilsy María, 2021. "Economic analysis of the German regulation for electrical generation projects from biogas applying the theory of real options," Energy, Elsevier, vol. 231(C).
    4. Mozumder, Pallab & Vásquez, William F. & Marathe, Achla, 2011. "Consumers' preference for renewable energy in the southwest USA," Energy Economics, Elsevier, vol. 33(6), pages 1119-1126.
    5. José Balibrea-Iniesta, 2020. "Economic Analysis of Renewable Energy Regulation in France: A Case Study for Photovoltaic Plants Based on Real Options," Energies, MDPI, vol. 13(11), pages 1-19, June.
    6. Hokey Min & Yohannes Haile, 2021. "Examining the Role of Disruptive Innovation in Renewable Energy Businesses from a Cross National Perspective," Energies, MDPI, vol. 14(15), pages 1-19, July.
    7. Mariia Kozlova & Alena Lohrmann, 2021. "Steering Renewable Energy Investments in Favor of Energy System Reliability: A Call for a Hybrid Model," Sustainability, MDPI, vol. 13(24), pages 1-18, December.
    8. Anabela Botelho & Lígia Costa Pinto & Patricia Sousa, 2013. "Valuing wind farms’ environmental impacts by geographical distance: A contingent valuation study in Portugal," NIMA Working Papers 52, Núcleo de Investigação em Microeconomia Aplicada (NIMA), Universidade do Minho.
    9. deLlano-Paz, Fernando & Calvo-Silvosa, Anxo & Iglesias Antelo, Susana & Soares, Isabel, 2015. "The European low-carbon mix for 2030: The role of renewable energy sources in an environmentally and socially efficient approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 49-61.
    10. Şengül, Ümran & Eren, Miraç & Eslamian Shiraz, Seyedhadi & Gezder, Volkan & Şengül, Ahmet Bilal, 2015. "Fuzzy TOPSIS method for ranking renewable energy supply systems in Turkey," Renewable Energy, Elsevier, vol. 75(C), pages 617-625.
    11. Knoefel, Jan & Sagebiel, Julian & Yildiz, Özgür & Müller, Jakob R. & Rommel, Jens, 2018. "A consumer perspective on corporate governance in the energy transition: Evidence from a Discrete Choice Experiment in Germany," Energy Economics, Elsevier, vol. 75(C), pages 440-448.
    12. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    13. Sundt, Swantje & Rehdanz, Katrin, 2015. "Consumers' willingness to pay for green electricity: A meta-analysis of the literature," Energy Economics, Elsevier, vol. 51(C), pages 1-8.
    14. Grösche, Peter & Schröder, Carsten, 2011. "Eliciting public support for greening the electricity mix using random parameter techniques," Energy Economics, Elsevier, vol. 33(2), pages 363-370, March.
    15. Dagher, Leila & Harajli, Hassan, 2015. "Willingness to pay for green power in an unreliable electricity sector: Part 1. The case of the Lebanese residential sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1634-1642.
    16. Akcura, Elcin, 2015. "Mandatory versus voluntary payment for green electricity," Ecological Economics, Elsevier, vol. 116(C), pages 84-94.
    17. Kozlova, Mariia, 2017. "Real option valuation in renewable energy literature: Research focus, trends and design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 180-196.
    18. Menegaki, Angeliki N., 2012. "A social marketing mix for renewable energy in Europe based on consumer stated preference surveys," Renewable Energy, Elsevier, vol. 39(1), pages 30-39.
    19. Monjas-Barroso, Manuel & Balibrea-Iniesta, José, 2013. "Valuation of projects for power generation with renewable energy: A comparative study based on real regulatory options," Energy Policy, Elsevier, vol. 55(C), pages 335-352.
    20. Peter Grösche & Carsten Schröder, 2010. "Eliciting Public Support for Greening the Electricity Mix Using Random Parameter Techniques," Ruhr Economic Papers 0233, Rheinisch-Westfälisches Institut für Wirtschaftsforschung, Ruhr-Universität Bochum, Universität Dortmund, Universität Duisburg-Essen.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:eerjnl:v:3:y:2012:i:1:p:158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.